Changing Bases- HW Problems

For all of the following problems when you are changing bases use a change of basis matrix P.

1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x_1, x_2) = (2x_1 + x_2, x_1 - x_2)$.

a. Find a matrix A which represent T in the standard basis $\{\vec{e}_1, \vec{e}_2\}$ for \mathbb{R}^2 .

b. Let $v_1 = e_1 + e_2$ and $v_2 = e_1 - e_2$. $\{v_1, v_2\}$ is another basis for \mathbb{R}^2 . Find a matrix representation, *B*, of *T* with respect to $\{v_1, v_2\}$ (for both $\mathbb{R}^{2'}s$).

c. Let $w_1 = -e_1 + 3e_2$ and $w_2 = 2e_1 - e_2$. Find a matrix representation, *C*, of *T* with respect to $\{w_1, w_2\}$ (for both $\mathbb{R}^{2's}$).

d. Show that using the matrices from parts b and c you can find matrix C from matrix B and the change of basis matrix from $\{w_1, w_2\}$ to $\{v_1, v_2\}$.

In problems 2-5 A is a matrix representation of a linear transformation in the standard basis. Find a matrix representation of the linear transformation in the new basis.

2.
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
; new basis = {< 1, 2 >, < 1, 1 >}

3. $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$; new basis = {< 7, 3 >, < 2, 1 >}

4.
$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix};$$

new basis= {< 1, 1, 1 >, < 2, 1, 0 >, < -1, 1, 1 >}
You can assume that if $P = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ then $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -2 \\ -1 & 2 & -1 \end{bmatrix}$

5.
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ -1 & 2 & 1 \end{bmatrix};$$

new basis= {< 0, -2, 1 >, < 1, 2, 0 >, < 1, 1, 1 >}.
You can assume that if $P = \begin{bmatrix} 0 & 1 & 1 \\ -2 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ then $P^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 3 & -1 & -2 \\ -2 & 1 & 2 \end{bmatrix}$

6. Suppose $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ by

 $T(a_0 + a_1x + a_2x^2) = (a_0 + a_1) + (a_2 - a_1)x + (a_2 - a_0)x^2.$

a. Find a matrix representation of T with respect to the standard basis for $P_2(\mathbb{R})$, $\{1, x, x^2\}$.

b. Find a matrix representation of *T* with respect to the basis $\{1 + x, x + x^2, 1 + x^2\}$.

You can assume that if $P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ then $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$.

c. Find a matrix representation of *T* with respect to the basis $\{1, 1 + x, 1 + x + x^2\}$.

You can assume that if $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ then $P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.

7. $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix Q such that $B = Q^{-1}AQ$. Show that if A and B are similar matrices then $\det(A) = \det(B)$.

- 8. Suppose that A, B, and C are $n \times n$ matrices. Show
- a. *A* is similar to *A*
- b. If *A* is similar to *B*, then *B* is similar to *A*.
- c. If A is similar to B, and B is similar to C, then A is similar to C.

Note: a, b, and c mean that similarity of matrices is an equivalence relation.

- 9. Suppose that A is an invertible $n \times n$ matrix and A is similar to B.
- a. Prove that *B* is invertible.
- b. Prove that A^{-1} is similar to B^{-1} .