
1 
 

            Solving Systems of Linear Equations Using Linear Transformations 

 

A linear system of 𝑚 equations in 𝑛 unknowns is given by: 

                           𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

                           𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

                                                      ⋮ 

                          𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚  

 

where 𝑎𝑖𝑗 and 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑚,   1 ≤ 𝑗 ≤ 𝑛 are real numbers and the unknowns, 

𝑥1, … , 𝑥𝑛 are also real numbers. 

 

Notice that we can write these equations in matrix form as 𝐴𝑥 = 𝑏, where 𝐴 is 

the 𝑚 × 𝑛 matrix, 𝑥 is a vector in ℝ𝑛 and 𝑏 is a vector in ℝ𝑚 given by: 

              𝐴 = [

𝑎11

𝑎21

𝑎12

𝑎22
⋯

𝑎1𝑛

𝑎2𝑛

⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

];       𝑥 = [

𝑥1

⋮
𝑥𝑛

] ;        𝑏 = [
𝑏1

⋮
𝑏𝑚

].         

 

So a solution to the system of linear equations given by 𝐴𝑥 = 𝑏 is any 𝑛-tuple 

 𝑠 = [

𝑠1

⋮
𝑠𝑛

] ∈ ℝ𝑛  such that 𝐴𝑠 = 𝑏. 

The system is called consistent if the solution set is non-empty, otherwise it is 

called inconsistent. 
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Ex.  Consider the system of equations: 

                                         𝑥1 + 𝑥2 = 4 

                                         𝑥1 − 𝑥2 = 2. 

         It is clear from elementary algebra that 𝑥1 = 3 and 𝑥2 = 1 is the solution set. 

 

          In matrix form we have: 

                                         [
1    1
1 −1

] [
𝑥1

𝑥2
] = [

4
2
] 

           where   𝐴 = [
1    1
1 −1

] ,     𝑏 = [
4
2
],    and   𝑠 = [

3
1
]. 

 

 

Ex.   Consider the system of equations: 

                                          2𝑥1 − 𝑥2 + 𝑥3 = 6 

                                             𝑥1 + 𝑥2 + 𝑥3 = 9. 

          In matrix form we write: 

                                        [
2   −1 1
1      1 1

] [

𝑥1

𝑥2

𝑥3

] = [
6
9
]. 

           This system has an infinite number of solutions.  Among them are: 

                                                 𝑠 = [
   5
   4
   0

]       and     𝑠 = [
   7
   5
−3

]. 

             Later we will see how to express all of the solutions. 
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Ex.   Consider the system of equations: 

                                               𝑥1 + 𝑥2 = 1 

                                               𝑥1 + 𝑥2 = 2 

         which in matrix form is: 

                                               [
1 1
1 1

] [
𝑥1

𝑥2
] = [

1
2
]. 

         This system of equations does not have any solution since if the sum of two 

          numbers is 1 it can’t also be 2. Thus this system is inconsistent. 

 

Def.  A system 𝐴𝑥 = 𝑏 of 𝑚 linear equations in 𝑛 unknowns is said to be 

homogeneous if 𝑏 = 0.  Otherwise the system is said to be nonhomogeneous. 

 

A homogenous system has at least one solution,  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0. 

 

Given a system of 𝑚 linear equations in 𝑛 unknowns, 𝐴𝑥 = 𝑏, we can think of 𝐴 

as representing a linear transformation 𝐿𝐴: ℝ𝑛 → ℝ𝑚.  Thus solving the system is 

equivalent to finding all vectors in ℝ𝑛 whose image under 𝐿𝐴 is the fixed vector 

< 𝑏1, … , 𝑏𝑚 >.  In particular, if < 𝑏1, … , 𝑏𝑚 >=< 0,… ,0 > then the solution is 

the null set, 𝑁(𝐿𝐴), of 𝐿𝐴.  Thus we have: 

 

Theorem:  Let 𝐴𝑥 = 0 be a homogeneous system of 𝑚 linear equations in 𝑛 

unknowns.  Let 𝐾 denote the set of all solutions to 𝐴𝑥 = 0.  Then 𝐾 = 𝑁(𝐿𝐴), 

hence 𝐾 is a subspace of ℝ𝑛 of dimension 𝑛 − 𝑅𝑎𝑛𝑘(𝐿𝐴) = 𝑛 − 𝑅𝑎𝑛𝑘(𝐴). 

 

Corollary:  If 𝑚 < 𝑛, the system 𝐴𝑥 = 0 has a nonzero solution. 

 

Proof:     dim(𝐾) = 𝑛 − 𝑅𝑎𝑛𝑘(𝐿𝐴) ≥ 𝑛 − 𝑚 > 0. 
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Thus a homogenous system of linear equations with fewer equations than 

unknowns always has a nonzero solution. 

 

Ex.  Consider the system: 

                                 2𝑥1 − 𝑥2 + 𝑥3 = 0 

                                    𝑥1 + 𝑥2 + 𝑥3 = 0. 

         Find all of the solutions.  

 

         In matrix form we have: 

                              𝐴𝑥 = [
2 −1 1
1    1 1

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
]. 

           < 2,1 > and < −1,1 > (the first two column vectors) are linearly 

            independent  and dim(𝑅(𝐿𝐴)) ≤ 2 so  dim(𝑅(𝐿𝐴)) = 2. 

            Thus the dimesion of the solution set 𝐾 = 𝑁(𝐿𝐴) is: 

                                     dim(𝐾) = 𝑛 − 𝑅𝑎𝑛𝑘(𝐴) = 3 − 2 = 1.  

             So any nonzero vector in 𝐾 will be a basis for 𝐾.  So we just need a 

              nonzero vector in 𝑁(𝐿𝐴).  

 

              To find a nonzero vector in 𝑁(𝐿𝐴) we can just let 𝑥1 = 1, for example, in 

               the system to get: 

                            2 − 𝑥2 + 𝑥3 = 0      or      −𝑥2 + 𝑥3 = −2 

                             1 + 𝑥2 + 𝑥3 = 0                   𝑥2 + 𝑥3 = −1. 

               Solving these equations we get:     𝑥2 =
1

2
 ,     𝑥3 = −

3

2
 . 

               Thus < 1,
1

2
, −

3

2
> is a nonzero vector in 𝑁(𝐿𝐴). 

    Thus the solution set for this system is:          𝐾 = {𝑡 < 1,
1

2
, −

3

2
>|  𝑡 ∈ ℝ}. 
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Ex.  Consider the system  2𝑥1 − 𝑥2 + 𝑥3 = 0 of one equation in three unknowns.   

        In matrix form we have:    [2 −1 1] [

𝑥1

𝑥2

𝑥3

] = [0].  Find all of the solutions. 

 

         𝑅𝑎𝑛𝑘(𝐴) = 1 so dim(𝐾) = 𝑛 − 𝑅𝑎𝑛𝑘(𝐴) = 3 − 1 = 2.  

 

         Thus if we can find two linearly independent solutions they will span 𝐾.  

 

          We can find one solution by letting 𝑥1 = 0.  Then 

                 −𝑥2 + 𝑥3 = 0      ⟹        𝑥2 = 𝑥3   ⟹ < 0,1,1 >   is a solution.  

 

        Now let 𝑥3 = 0.  Then 2𝑥1 − 𝑥2 = 0   ⟹      2𝑥1 = 𝑥2. 

        Thus < 1,2,0 > is another solution. 

         Since < 0,1,1 >  and < 1,2,0 > are linearly independent we know the 

         solution set is: 

                               𝐾 = {𝑡1 < 0,1,1 > +𝑡2 < 1,2,0 >| 𝑡1, 𝑡2 ∈ ℝ}. 

 

Theorem:  Let 𝐾 be the solution set for the system of linear equations 𝐴𝑥 = 𝑏.  

Let 𝐾𝐻 be the solution set for 𝐴𝑥 = 0.  Then if 𝑠 is any solution to 𝐴𝑥 = 𝑏 then all 

solutions, 𝐾, are given by: 

                             𝐾 = {𝑠} + 𝐾𝐻 = {𝑠 + 𝑘| 𝑘 ∈ 𝐾𝐻}. 

 

Proof:  Let 𝑠 and 𝑤 be any two solutions to 𝐴𝑥 = 𝑏. 

             Then we have: 

                         𝐴(𝑠 − 𝑤) = 𝐴(𝑠) − 𝐴(𝑤) = 𝑏 − 𝑏 = 0. 

              So 𝑠 − 𝑤 ∈ 𝐾𝐻   ⟹ 𝑠 = 𝑤 + 𝑘  for some 𝑘 ∈ 𝐾𝐻 .    ⟹ 𝐾 ⊆ {𝑠} + 𝐾𝐻. 
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               Now suppose that 𝑤 ∈ {𝑠} + 𝐾𝐻. 

               Then 𝑤 = 𝑠 + 𝑘,  for some 𝑘 ∈ 𝐾𝐻.  So we have: 

                             𝐴𝑤 = 𝐴(𝑠 + 𝑘) = 𝐴𝑠 + 𝐴𝑘 = 𝑏,     ⟹   𝑤 ∈ 𝐾. 

               Hence {𝑠} + 𝐾𝐻 ⊆ 𝐾,      ⟹   {𝑠} + 𝐾𝐻 = 𝐾. 

 

 

Ex.  Consider the system  

                                 2𝑥1 − 𝑥2 + 𝑥3 = 6 

                                    𝑥1 + 𝑥2 + 𝑥3 = 9. 

        Find all of the solutions. 

 

       We saw earlier that 𝐾𝐻 = {𝑡 < 1,
1

2
, −

3

2
>|  𝑡 ∈ ℝ}. 

        So to find all of the solutions of the system we only need to find a single 

        solution. 

        To find a single solution just let 𝑥3 = 0, for example, then the system 

         becomes 

                                     2𝑥1 − 𝑥2 = 6 

                                        𝑥1 + 𝑥2 = 9  

                                       3𝑥1          = 15    ⟹    𝑥1 = 5,    𝑥2 = 4.   

 

              Thus < 5,4,0 > is a solution.  Hence the set of all solutions is 

                                    𝐾 = {< 5,4,0 > +𝑡 < 1,
1

2
, −

3

2
>|  𝑡 ∈ ℝ}. 
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Ex.  Consider the system 2𝑥1 − 𝑥2 + 𝑥3 = 8.  Find all solutions. 

 

     We found earlier that 𝐾𝐻 = {𝑡1 < 0,1,1 > +𝑡2 < 1,2,0 >| 𝑡1, 𝑡2 ∈ ℝ}. 

      So we just need to find a single solution of 2𝑥1 − 𝑥2 + 𝑥3 = 8.    

 

       If we let 𝑥1 = 𝑥2 = 0, then 𝑥3 = 8. 

       Thus < 0,0,8 > is a solution.  Hence all of the solutions are given by: 

 

                      𝐾 = {< 0,0,8 > +𝑡1 < 0,1,1 > +𝑡2 < 1,2,0 >|  𝑡1, 𝑡2 ∈ ℝ}. 

 

 

Theorem:  Let 𝐴𝑥 = 𝑏 be a system of 𝑛 linear equations in 𝑛 unknowns.  If 𝐴 is 

invertible, then the system has exactly one solution, 𝐴−1𝑏.  Conversely, if the 

system has exactly one solution then 𝐴 is invertible. 

 

Proof:  If 𝐴 is invertible then 

                            𝐴𝑥 = 𝑏 

                     𝐴−1𝐴𝑥 = 𝐴−1𝑏  

                            𝐼𝑥 = 𝐴−1𝑏 

                              𝑥 = 𝐴−1𝑏. 

 

            Now suppose the system has exactly one solution, 𝑠. 

            But we know that the solution set is {𝑠} = {𝑠} + 𝐾𝐻   ⟹    𝐾𝐻 = {0}. 

            Hence 𝑁(𝐿𝐴) = {0} and 𝐴 is invertible. 
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Ex.  Consider the system of equations: 

                             𝑥1 + 4𝑥2 + 3𝑥3 = 12 

                           −𝑥1 − 2𝑥2             = 4 

                            2𝑥1 + 2𝑥2 + 3𝑥3 = 24. 

          Find all of the solutions. 

 

           In matrix form 𝐴𝑥 = 𝑏 we have: 

                                  [
   1    4 3
−1 −2 0
   2    2 3

] [

𝑥1

𝑥2

𝑥3

] = [
12
4
24

]. 

 

       In an example in the previous section we found 𝐴−1 to be: 

                          𝐴−1 =

[
 
 
 
 −

1

2
−

1

2
   

1

2

   
1

4
−

1

4
−

1

4

   
1

6
   

1

2
   

1

6 ]
 
 
 
 

 . 

 

       Thus there is a unique solution, 𝐴−1 [
12
4
24

]: 

                            

[
 
 
 
 −

1

2
−

1

2
   

1

2

   
1

4
−

1

4
−

1

4

   
1

6
   

1

2
   

1

6 ]
 
 
 
 

[
12
4
24

] = [
   4
−4
   8

]. 

      

         So the unique solution to this system is < 4,−4,8 >. 
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Ex.   Suppose that 𝐴 is a 3 × 5 matrix representing a linear transformation 

        𝑇: ℝ5 → ℝ3 with dim(𝑁(𝑇)) = 2.  Show that for any 𝑏 ∈ ℝ3 

        a.    𝐴𝑥 = 𝑏 has at least one solution 𝑥 ∈ ℝ5, ie, 𝑏 ∈ 𝑅(𝑇). 

        b.    𝐴𝑥 = 𝑏 has an infinite number of solutions. 

 

a.    By the dimension theorem we have: 

                     dim(𝑁(𝑇)) + dim(𝑅(𝑇)) = dim(ℝ5) 

                               2         + dim(𝑅(𝑇)) = 5 

                                                dim(𝑅(𝑇)) = 3. 

          But  dim(ℝ3) = 3 = dim(𝑅(𝑇)) so 𝑇 (and 𝐴) is onto. 

         Hence given any  𝑏 ∈ ℝ3 there is at least one solution  𝑥 ∈ ℝ5 with 𝐴𝑥 = 𝑏. 

 

  b.    All solutions of 𝐴𝑥 = 𝑏 are of the form 𝑥𝑝 + 𝑥0, where 𝑥𝑝 is any particular  

         solution to 𝐴𝑥 = 𝑏, and 𝑥0 is any solutions of 𝐴𝑥 = 0. 

 

         But all solutions of 𝐴𝑥 = 0 are precisely the elements of the set 𝑁(𝑇). 

         Since dim(𝑁(𝑇)) = 2 we know that we can write: 

                           𝑁(𝑇) = {𝑎𝑣1 + 𝑏𝑣2| 𝑎, 𝑏 ∈ ℝ},   where 𝑣1, 𝑣2 are basis vectors.  

 

         Hence  𝑁(𝑇) contains an infinity number of elements. 

 

         By part a we know that there is at least one particular solution of 𝐴𝑥 = 𝑏. 

 

         Hence all solutions of 𝐴𝑥 = 𝑏,  {𝑥𝑝 + 𝑥0}, is an infinite set. 


