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                           A Matrix’s Rank and Calculating Inverse Matrices 

 

Def.  If 𝐴 ∈ 𝑀𝑚×𝑛(ℝ), we define the rank of 𝑨, denoted 𝑅𝑎𝑛𝑘(𝐴), to be the 

rank of the linear transformation associated with 𝐴, 𝐿𝐴,   𝐿𝐴: ℝ
𝑛 → ℝ𝑚. 

 

If 𝑚 = 𝑛, then notice that an 𝑛 × 𝑛 matrix is invertible if and only if its rank is 𝑛.  

This follows from an earlier theorem about linear transformations.  This is 

because any matrix 𝐴 is the matrix representation of a linear transformation.  In 

fact we have: 

 

Theorem:  Let 𝑇: 𝑉 → 𝑊 be a linear transformation between finite dimensional 

vector spaces, and let 𝐵1 and 𝐵2 be ordered bases for 𝑉 and 𝑊 respectively.  

Then 𝑅𝑎𝑛𝑘(𝑇) = 𝑅𝑎𝑛𝑘([𝑇]𝐵1
𝐵2). 

 

Theorem:  Let 𝐴 be an 𝑚 × 𝑛 matrix.  If 𝑃 is an 𝑚×𝑚 matrix and 𝑄 is an 𝑛 × 𝑛 

matrix, both invertible, then 

a.   𝑅𝑎𝑛𝑘(𝐴𝑄) = 𝑅𝑎𝑛𝑘(𝐴) 

b.   𝑅𝑎𝑛𝑘(𝑃𝐴) = 𝑅𝑎𝑛𝑘(𝐴) 

c.   𝑅𝑎𝑛𝑘(𝑃𝐴𝑄) = 𝑅𝑎𝑛𝑘(𝐴). 

 

Proof: a.    𝑅(𝐿𝐴𝑄) = 𝑅(𝐿𝐴𝐿𝑄) = 𝐿𝐴𝐿𝑄(ℝ
𝑛) 

                                 = 𝐿𝐴 (𝐿𝑄(ℝ
𝑛)) = 𝐿𝐴(ℝ

𝑛)                (since 𝐿𝑄 is onto) 

                                   = 𝑅(𝐿𝐴). 

              Thus we have: 

                𝑅𝑎𝑛𝑘(𝐴𝑄) = dim(𝑅(𝐿𝐴𝑄)) = dim(𝑅(𝐿𝐴)) = 𝑅𝑎𝑛𝑘(𝐴). 



2 
 

    b.      Similarly, we have: 

               𝑅(𝐿𝑃𝐴) = 𝑅(𝐿𝑃(𝐿𝐴)) = 𝐿𝑃(𝐿𝐴(ℝ
𝑛)). 

      But 𝐿𝐴(ℝ
𝑛) is a subspace of 𝑅𝑚. 

      Since 𝑃 is invertible we have: 

                dim (𝐿𝑃(𝐿𝐴(ℝ
𝑛)) = dim(𝐿𝐴(ℝ

𝑛)) = 𝑅𝑎𝑛𝑘(𝐴). 

       So the 𝑅𝑎𝑛𝑘(𝑃𝐴) = 𝑅𝑎𝑛𝑘(𝐴). 

 

       c.   Follows from parts a and b. 

 

Corollary:  Elementary row and column operations on a matrix are rank 

preserving. 

 

Proof:  Every elementary row or column operation can be viewed as a 

multiplicaion of a matrix by an invertible matrix on the left (elementary row 

operations) or the right (elementary column operations). 

 

Theorem:  The rank of any matrix equals the maximum number of its linearly 

independent columns.  Thus the rank of a matrix is the dimension of the subspace 

generated by its columns. 

 

Proof:      Let 𝐴 ∈ 𝑀𝑚×𝑛(ℝ). 

                 𝑅𝑎𝑛𝑘(𝐴) = 𝑅𝑎𝑛𝑘(𝐿𝐴) = dim(𝑅(𝐿𝐴)). 

                 Let 𝐵 be the standard ordered basis for ℝ𝑛.   
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Then we have: 

                              𝑅(𝐿𝐴) = 𝑠𝑝𝑎𝑛{𝐿𝐴(𝐵)} 

                                           = 𝑠𝑝𝑎𝑛{𝐿𝐴(𝑒1), … , 𝐿𝐴(𝑒𝑛)}   

                  But  𝐿𝐴(𝑒𝑗) = 𝑗
𝑡ℎ column of 𝐴 = 𝑣𝑗. 

          Thus   𝑅(𝐿𝐴) = 𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑛}. 

          Hence 𝑅𝑎𝑛𝑘(𝐴) = dim(𝑅(𝐿𝐴)) = dim(𝑠𝑝𝑎𝑛{𝑣1, … , 𝑣𝑛}). 

 

Ex.  Let 𝐴 = [
1 0 1
1 1 2
1 0 1

].  Find the 𝑅𝑎𝑛𝑘(𝐴). 

 

      Notice that columns one and two are linearly independent, but column 3 is the 

      sum of columns one and two. Thus we have: 

                  𝑅𝑎𝑛𝑘(𝐴) = dim(𝑆𝑝𝑎𝑛 {[
1
1
1
] , [

0
1
0
] , [

1
2
1
]}) = 2. 

 

 

In general it can be difficult to identify the maximum number of linearly 

independent columns of a matrix 𝐴.  However, we know that we don’t change 

𝑅𝑎𝑛𝑘(𝐿𝐴) by performing elementary row (or column) operations (since they are 

invertible).  Thus we can find the maximum number of linearly independent 

columns of a matrix 𝐴 through elementary row and column operations.     
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Ex.  Let 𝐴 = [
1 2 1
2 1 5
2 3 3

].  Find 𝑅𝑎𝑛𝑘(𝐴). 

 

     Subtracting 2(row 1) from row 2 and replacing it in row 2:  𝑅2 − 2𝑅1 → 𝑅2. 

                        

                       [
1 2 1
2 1 5
2 3 3

] → [
1    2 1
0 −3 3
2    3 3

]. 

 

 

Now subtract 2(row 1) from row 3 and replace it in row 3:  𝑅3 − 2𝑅1 → 𝑅3. 

                    [
1    2 1
0 −3 3
2    3 3

] → [
1    2 1
0 −3 3
0 −1 1

]. 

 

Next subtract  2(column 1) from column 2 and replace it in column 2:                 

𝐶2 − 2𝐶1 → 𝐶2.  

                      [
1    2 1
0 −3 3
0 −1 1

] → [
1    0 1
0 −3 3
0 −1 1

]. 

 

Finally, subtract column 1 from column 3 and replace it in column 3: 𝐶3 − 𝐶1 → 𝐶3 

                       [
1    0 1
0 −3 3
0 −1 1

] → [
1    0 0
0 −3 3
0 −1 1

]. 

 

It’s now clear that 𝐶3 = −𝐶2 and the 𝐶1 and 𝐶2 are linearly independent.  Thus 

𝑅𝑎𝑛𝑘(𝐴) = 2. 
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In fact, given an 𝑚 × 𝑛 matrix 𝐴 we can always transform it using elementary row 

and column operations into a matrix that looks like: 

                                            𝐷 = [
𝐼𝑟 01
02 03

] 

where 01, 02 , and 03 are zero matrices. 

 

 

 

Ex.  Put 𝐴 = [

0 2 2 0
2 2 0 4
4
0
6
4
4
2
6
2

] in the form 𝐷 = [
𝐼𝑟 01
02 03

] through elementary row  

       and column operations and find the 𝑅𝑎𝑛𝑘(𝐴). 
 

                         [

0 2 2 0
2 2 0 4
4
0
6
4
4
2
6
2

] 
𝑅2↔𝑅1
→    [

2 2 0 4
0 2 2 0
4
0
6
4
4
2
6
2

]
1

2
𝑅1→𝑅1

→      [

1 1 0 2
0 2 2 0
4
0
6
4
4
2
6
2

] 

 

                                      
𝑅3−4𝑅1→𝑅3
→        [

1 1 0    2
0 2 2    0
0
0
2
4
4
2
−2
   2

]
𝐶2−𝐶1→𝐶2
→       [

1 0 0    2
0 2 2    0
0
0
2
4

4
2
−2
   2

] 

                                 

                               
𝑅3−𝑅2→𝑅3
→       [

1 0 0    2
0 2 2    0
0
0
0
4
2
2
−2
   2

]
𝑅4−2𝑅2→𝑅4
→        [

1 0    0     2
0 2    2     0
0
0
0
0

   2
−2

−2
    2

]  
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𝑅3+𝑅4→𝑅4
→       [

1 0 0    2
0 2 2    0
0
0
0
0
2
0
−2
   0

]
1

2
𝑅3→𝑅3

→     [

1 0 0    2
0 2 2    0
0
0
0
0
1
0
−1
   0

]  

 

                                    
1

2
𝑅2→𝑅2

→     [

1 0 0    2
0 1 1    0
0
0
0
0
1
0
−1
   0

]
𝐶4−2𝐶1→𝐶4
→        [

1 0 0    0
0 1 1    0
0
0
0
0
1
0
−1
   0

]  

                                     
𝐶3−𝐶2→𝐶3
→       [

1 0 0    0
0 1 0    0
0
0
0
0
1
0

−1
   0

]
𝐶3+𝐶4→𝐶4
→       [

1 0 0 0
0 1 0 0
0
0
0
0
1
0
0
0

]  . 

Thus the 𝑅𝑎𝑛𝑘(𝐴) = 3. 

 

Note:  One does not necessarily need to transform a matrix into the form             

𝐷 = [
𝐼𝑟 01
02 03

] to identify its rank. 

 

Ex.  Find the rank of 𝐴 = [
1 3 1 1
2 0 2 2
1 6 1 1

]. 

 

   [
1 3 1 1
2 0 2 2
1 6 1 1

]
𝑅2−2𝑅1→𝑅2
→        [

1    3 1 1
0 −6 0 0
1    6 1 1

]
𝑅3−𝑅1→𝑅3
→       [

1    3 1 1
0 −6 0 0
0    3 0 0

]. 

 

    It’s now clear that there are two linearly independent column vectors so 

     𝑅𝑎𝑛𝑘(𝐴) = 2. 
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Ex.  Find the rank of 𝐴 = [
1    2 3 1
2    1 1 1
1 −1 1 0

]. 

 

     

[
1    2 3 1
2    1 1 1
1 −1 1 0

]
𝑅2−2𝑅1→𝑅2
→        [

1    2    3    1
0 −3 −5 −1
1 −1    1    0

]
𝑅3−𝑅1→𝑅3
→       [

1    2    3    1
0 −3 −5 −1
0 −3 −2 −1

]     

 

                               
𝑅3−𝑅2→𝑅3
→       [

1    2    3    1
0 −3 −5 −1
0    0    3     0

]. 

 

It is now clear that < 1,0,0 >,< 2,−3,0 > and < 3,−5, 3 > are linearly 

independent in ℝ3. Since one can have at most 3 linearly independent vectors in 

ℝ3,  the 𝑅𝑎𝑛𝑘(𝐴) = 3.    

 

Given any 𝑛 × 𝑛 matrix 𝐴 we can put it in the form: 

                                               𝐷 = [
𝐼𝑟 01
02 03

]         

using elementary row and column operations.  In particular, if 𝐴 is invertible then 

                                                𝐷 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] = 𝐼𝑛. 
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So if 𝐴 is  𝑛 × 𝑛 and invertible then there exist invertible matrices 𝐵 and 𝐶 such 

that:                                       𝐼𝑛 = 𝐵𝐴𝐶 

where 𝐵 = 𝐸𝑝⋯𝐸1 and 𝐶 = 𝐺1⋯𝐺𝑞 are products of elementary matrices. 

 

But if we have   𝐼𝑛 = 𝐵𝐴𝐶  then we have: 

                                       𝐼𝑛 = 𝐵𝐴𝐶   

                                𝐼𝑛𝐶
−1 = 𝐵𝐴𝐶𝐶−1 

                                    𝐶−1 = 𝐵𝐴 

                                 𝐶𝐶−1 = 𝐶𝐵𝐴 

                                       𝐼𝑛 = 𝐶𝐵𝐴. 

 

Thus we can write: 

                           𝐸1⋯𝐸𝑘𝐴 = 𝐼𝑛 

where the 𝐸𝑖′𝑠 are elementary matrices. 

 

But then we have: 

                   𝐸1⋯𝐸𝑘𝐴𝐴
−1 = 𝐼𝑛𝐴

−1 = 𝐴−1 

                          𝐸1⋯𝐸𝑘𝐼𝑛 = 𝐴
−1. 

 

Thus to find 𝑨−𝟏 we just need to apply to 𝑰𝒏 the same elemtary row operations 

that turned 𝑨 into 𝑰𝒏.     

 

Ex.  Let 𝐴 = [
   1    4 3
−1 −2 0
   2    2 3

].    Find 𝐴−1. 
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We start by creating the augmented matrix (𝐴|𝐼3). 

We will then apply a sequence of elementary row operations that transform 𝐴 

into 𝐼3, to both 𝐴 and 𝐼3. 

 

 

                                                                                                                   Row Operations 

[
   1    4 3
−1 −2 0
   2    2 3

|
1 0 0
0 1 0
0 0 1

] → [
   1    4    3
−1 −2    0
   0 −6 −3

|
1 0 0
0 1 0
−2 0 1

]       𝑅3 − 2𝑅1 → 𝑅3  

→ [
1    4    3
0    2    3
0 −6 −3

|
   1 0 0
   1 1 0
−2 0 1

]                                                        𝑅1 + 𝑅2 → 𝑅2         

→ [
1 4 3
0 2 3
0 0 6

|
1 0 0
1 1 0
1 3 1

]                                                                𝑅3 + 3𝑅2 → 𝑅3         

→ [
1 2 0
0 2 3
0 0 6

|
0 −1 0
1    1 0
1    3 1

]                                                               𝑅1 − 𝑅2 → 𝑅1 

→  [
1 2 0
0 2 0
0 0 6

 |

0 −1    0
1

2
−
1

2
−
1

2

1    3    1

]                                                     𝑅2 −
1

2
𝑅3 → 𝑅2 

→ [
1 0 0
0 2 0
0 0 6

|

−
1

2
−
1

2
   
1

2

   
1

2
−
1

2
−
1

2

   1    3    1

]                                                         𝑅1 − 𝑅2 → 𝑅1 

→ 

[
 
 
 
 1 0 0
0 1 0
0 0 1

|
|

−
1

2
−
1

2
   
1

2

   
1

4
−
1

4
−
1

4

   
1

6
   
1

2
   
1

6 ]
 
 
 
 

                                            
1

6
𝑅3 → 𝑅3,   

1

2
𝑅2 → 𝑅2  
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So 𝐴−1 =

[
 
 
 
 −

1

2
−
1

2
   
1

2

   
1

4
−
1

4
−
1

4

   
1

6
   
1

2
   
1

6 ]
 
 
 
 

 .     A straight forward calculation will show           

                                                               that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼3.   


