A Matrix's Rank and Calculating Inverse Matrices

Def. If $A \in M_{m \times n}(\mathbb{R})$, we define the **rank of** A, denoted Rank(A), to be the rank of the linear transformation associated with A, L_A , L_A : $\mathbb{R}^n \to \mathbb{R}^m$.

If m = n, then notice that an $n \times n$ matrix is invertible if and only if its rank is n. This follows from an earlier theorem about linear transformations. This is because any matrix A is the matrix representation of a linear transformation. In fact we have:

Theorem: Let $T: V \to W$ be a linear transformation between finite dimensional vector spaces, and let B_1 and B_2 be ordered bases for V and W respectively. Then $Rank(T) = Rank([T]_{B_1}^{B_2})$.

Theorem: Let A be an $m \times n$ matrix. If P is an $m \times m$ matrix and Q is an $n \times n$ matrix, both invertible, then

- a. Rank(AQ) = Rank(A)
- b. Rank(PA) = Rank(A)
- c. Rank(PAQ) = Rank(A).

Proof: a.
$$R(L_{AQ}) = R(L_A L_Q) = L_A L_Q(\mathbb{R}^n)$$

= $L_A (L_Q(\mathbb{R}^n)) = L_A(\mathbb{R}^n)$ (since L_Q is onto)
= $R(L_A)$.

Thus we have:

$$Rank(AQ) = \dim(R(L_{AQ})) = \dim(R(L_A)) = Rank(A).$$

b. Similarly, we have:

$$R(L_{PA}) = R(L_P(L_A)) = L_P(L_A(\mathbb{R}^n)).$$

But $L_A(\mathbb{R}^n)$ is a subspace of \mathbb{R}^m .

Since *P* is invertible we have:

$$\dim (L_P(L_A(\mathbb{R}^n)) = \dim(L_A(\mathbb{R}^n)) = Rank(A).$$

So the Rank(PA) = Rank(A).

c. Follows from parts a and b.

Corollary: Elementary row and column operations on a matrix are rank preserving.

Proof: Every elementary row or column operation can be viewed as a multiplication of a matrix by an invertible matrix on the left (elementary row operations) or the right (elementary column operations).

Theorem: The rank of any matrix equals the maximum number of its linearly independent columns. Thus the rank of a matrix is the dimension of the subspace generated by its columns.

Proof: Let $A \in M_{m \times n}(\mathbb{R})$.

 $Rank(A) = Rank(L_A) = \dim(R(L_A)).$

Let *B* be the standard ordered basis for \mathbb{R}^n .

Then we have:

$$R(L_A) = span\{L_A(B)\}$$

= $span\{L_A(e_1), ..., L_A(e_n)\}$
But $L_A(e_j) = j^{th}$ column of $A = v_j$.
Thus $R(L_A) = span\{v_1, ..., v_n\}$.
Hence $Rank(A) = \dim(R(L_A)) = \dim(span\{v_1, ..., v_n\})$.

Ex. Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$
. Find the $Rank(A)$.

Notice that columns one and two are linearly independent, but column 3 is the sum of columns one and two. Thus we have:

$$Rank(A) = \dim\left(Span\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}1\\2\\1\end{bmatrix}\right\}\right) = 2.$$

In general it can be difficult to identify the maximum number of linearly independent columns of a matrix A. However, we know that we don't change $Rank(L_A)$ by performing elementary row (or column) operations (since they are invertible). Thus we can find the maximum number of linearly independent columns of a matrix A through elementary row and column operations.

Ex. Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 5 \\ 2 & 3 & 3 \end{bmatrix}$$
. Find $Rank(A)$.

Subtracting 2(row 1) from row 2 and replacing it in row 2: $R_2 - 2R_1 \rightarrow R_2$.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 5 \\ 2 & 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & 3 \\ 2 & 3 & 3 \end{bmatrix}.$$

Now subtract 2(row 1) from row 3 and replace it in row 3: $R_3 - 2R_1 \rightarrow R_3$.

[1	2	1]		[1	2	1]	
0	-3	3	\rightarrow	0	-3	3.	
2	3	3		6	-1	1	

Next subtract 2(column 1) from column 2 and replace it in column 2: $C_2 - 2C_1 \rightarrow C_2$.

[1	2	[1		[1	0	1]	
0	-3	3	\rightarrow	0	-3	3.	
LO	-1	1		LO	-1	1	

Finally, subtract column 1 from column 3 and replace it in column 3: $C_3 - C_1 \rightarrow C_3$

[1	0	1]	[1	0	[0	
0	-3	3 →	0	-3	3.	
LO	-1	1	LO	-1	1	

It's now clear that $C_3 = -C_2$ and the C_1 and C_2 are linearly independent. Thus Rank(A) = 2.

In fact, given an $m \times n$ matrix A we can always transform it using elementary row and column operations into a matrix that looks like:

$$D = \begin{bmatrix} I_r & 0_1 \\ 0_2 & 0_3 \end{bmatrix}$$

where $\boldsymbol{0}_1$, $\boldsymbol{0}_2\,$, and $\boldsymbol{0}_3\,$ are zero matrices.

Ex. Put
$$A = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 2 & 2 & 0 & 4 \\ 4 & 6 & 4 & 6 \\ 0 & 4 & 2 & 2 \end{bmatrix}$$
 in the form $D = \begin{bmatrix} I_r & 0_1 \\ 0_2 & 0_3 \end{bmatrix}$ through elementary row

and column operations and find the Rank(A).

$$\begin{bmatrix} 0 & 2 & 2 & 0 \\ 2 & 2 & 0 & 4 \\ 4 & 6 & 4 & 6 \\ 0 & 4 & 2 & 2 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & 2 & 2 & 0 \\ 4 & 6 & 4 & 6 \\ 0 & 4 & 2 & 2 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1 \to R_1} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 4 & 6 & 4 & 6 \\ 0 & 4 & 2 & 2 \end{bmatrix}$$

$$\overrightarrow{R_{3}+R_{4}\rightarrow R_{4}} \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{3}\rightarrow R_{3}} \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\xrightarrow{\frac{1}{2}R_{2}\rightarrow R_{2}} \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \overrightarrow{C_{4}-2C_{1}\rightarrow C_{4}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\xrightarrow{C_{3}-C_{2}\rightarrow C_{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \overrightarrow{C_{3}+C_{4}\rightarrow C_{4}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} .$$

Thus the Rank(A) = 3.

Note: One does not necessarily need to transform a matrix into the form $D = \begin{bmatrix} I_r & 0_1 \\ 0_2 & 0_3 \end{bmatrix}$ to identify its rank.

Ex. Find the rank of
$$A = \begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 1 & 6 & 1 & 1 \end{bmatrix}$$
.

$$\begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & 0 & 2 & 2 \\ 1 & 6 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \to R_2} \begin{bmatrix} 1 & 3 & 1 & 1 \\ 0 & -6 & 0 & 0 \\ 1 & 6 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & 3 & 1 & 1 \\ 0 & -6 & 0 & 0 \\ 0 & 3 & 0 & 0 \end{bmatrix}.$$

It's now clear that there are two linearly independent column vectors so Rank(A) = 2.

Ex. Find the rank of
$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{bmatrix}$$
.

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \to R_2} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -3 & -5 & -1 \\ 1 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{R_3 - R_1 \to R_3} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -3 & -5 & -1 \\ 0 & -3 & -2 & -1 \end{bmatrix}$$

$$\xrightarrow[R_3 - R_2 \to R_3]{\left[\begin{matrix} 1 & 2 & 3 & 1 \\ 0 & -3 & -5 & -1 \\ 0 & 0 & 3 & 0 \end{matrix} \right]}.$$

It is now clear that < 1,0,0 >, < 2,-3,0 > and < 3,-5,3 > are linearly independent in \mathbb{R}^3 . Since one can have at most 3 linearly independent vectors in \mathbb{R}^3 , the Rank(A) = 3.

Given any $n \times n$ matrix A we can put it in the form:

$$D = \begin{bmatrix} I_r & 0_1 \\ 0_2 & 0_3 \end{bmatrix}$$

using elementary row and column operations. In particular, if A is invertible then

$$D = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} = I_n.$$

So if A is $n \times n$ and invertible then there exist invertible matrices B and C such that: $I_n = BAC$

where $B = E_p \cdots E_1$ and $C = G_1 \cdots G_q$ are products of elementary matrices.

But if we have $I_n = BAC$ then we have:

$$I_n = BAC$$
$$I_n C^{-1} = BACC^{-1}$$
$$C^{-1} = BA$$
$$CC^{-1} = CBA$$
$$I_n = CBA.$$

Thus we can write:

$$E_1 \cdots E_k A = I_n$$

where the E_i 's are elementary matrices.

But then we have:

$$E_1 \cdots E_k A A^{-1} = I_n A^{-1} = A^{-1}$$

 $E_1 \cdots E_k I_n = A^{-1}.$

Thus to find A^{-1} we just need to apply to I_n the same elemtary <u>row</u> operations that turned A into I_n .

Ex. Let
$$A = \begin{bmatrix} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$$
. Find A^{-1} .

We start by creating the augmented matrix $(A|I_3)$.

We will then apply a sequence of elementary row operations that transform A into I_3 , to both A and I_3 .

So
$$A^{-1} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \end{bmatrix}$$
. A straight forward calculation will show that $AA^{-1} = A^{-1}A = I_3$.