Vector Spaces- HW Problems

In problems 1-7 determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate that it is closed under addition and scalar multiplication and satisfies the 8 vector space axioms. If it's not, identify which items are violated. Assume the usual addition and scalar multiplication if it's not defined.

1.
$$V = \mathbb{R}^2$$
, $\langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$
 $c \langle x_1, x_2 \rangle = \langle cx_1, x_2 \rangle$

2.
$$V = \mathbb{R}^2$$
, $\langle x_1, x_2 \rangle + \langle y_1, y_2 \rangle = \langle x_1 + y_1, 0 \rangle$
 $c \langle x_1, x_2 \rangle = \langle cx_1, cx_2 \rangle$

- 3. $V = \{all polynomials with real coefficients with degree \geq 3 and the zero polynomial\}$
- 4. $V = \{ all polynomials with real coefficients with only even powers of x \}$ Note: this includes constants, ie $a_0 x^0$.

5.
$$V = \{f \colon \mathbb{R} \to \mathbb{R} \mid f(1) = 0\}$$

6.
$$V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$$

7. $V = \mathbb{R}$, $x + y = \max(x, y)$, cx = (c)(x) (usual multiplication)