Riemannian Metrics

- Def. Let M be a smooth manifold. A **Riemannian metric** on M is a symmetric bilinear form at each point $p \in M$ that takes elements of $(X, Y) \in T_pM \times T_pM$ into a real number g(X, Y) and g(X, X) > 0 if $X \neq 0$ (i.e. it's positive definite).
- Def. A smooth manifold, M, together with a Riemannian metric, g, is called a **Riemannian manifold**, (M, g).
- Ex. If $M = \mathbb{R}^2$ and $g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then g(X, Y) is the standard Euclidean inner product on \mathbb{R}^2 .

$$X = (\alpha_1, \alpha_2); \qquad Y = (\beta_1, \beta_2)$$

$$< X, Y > = g(X, Y) = (\alpha_1 \quad \alpha_2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \alpha_1 \beta_1 + \alpha_2 \beta_2 .$$

However, if we let \bar{g} be represented by $\bar{g} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ we would get a different inner product on \mathbb{R}^2 :

$$\langle X, Y \rangle = \bar{g}(X, Y) = (\alpha_1 \quad \alpha_2) \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$
$$= 2\alpha_1 \beta_1 + \alpha_1 \beta_2 + \alpha_2 \beta_1 + 3\alpha_2 \beta_2.$$

- Def. Let (M, g) be a Riemannian manifold. Suppose that X and Y are vectors in T_pM .
 - 1. The length of X, denoted ||X||, is defined as $||X|| = \sqrt{g(X, X)}$
 - 2. The angle θ between X and Y is defined by $\cos \theta = \frac{g(X,Y)}{\|X\| \|Y\|}$
 - 3. *X* and *Y* are called **orthogonal** if g(X, Y) = 0.

Two Riemannian manifolds are considered the same if they have the same metric.

Def. Let M and N be two Riemannian manifolds. A diffeomorphism $f: M \to N$ is called an **isometry** if for all $p \in M$ the following holds: $\langle X, Y \rangle_p = \langle df_p(X), df_p(Y) \rangle_{f(p)}$ for $X, Y \in T_pM$.

Two Riemannian manifolds are called **isometric** if there exists an isometry between them.

Given a parametrization of a manifold $\vec{\Phi}$, there is a Riemannian metric associated with $\vec{\Phi}$. We call this the **metric induced by** $\vec{\Phi}$.

Ex. Let $\vec{\Phi}(u, v) = (u, v, u^2 + v^2)$ be a parametrization of a surface *S*. Find the metric induce by $\vec{\Phi}$.

At (u, v) = (1, 2), Let $X \in T_{(1,2,5)}S$ be given by < 2, -3 >, i.e., $X = 2\overrightarrow{\Phi}_u(1,2) - 3\overrightarrow{\Phi}_v(1,2)$. Find ||X||?

$$\overrightarrow{\Phi}_u = <1, 0, 2u >, \qquad \overrightarrow{\Phi}_v = <0, 1, 2v >$$

As we saw earlier, we can get the metric induced by $\overrightarrow{\Phi}$ on S by:

$$g_{11} = \overrightarrow{\Phi}_{u} \cdot \overrightarrow{\Phi}_{u} = 1 + 4u^{2}$$
$$g_{12} = g_{21} = \overrightarrow{\Phi}_{u} \cdot \overrightarrow{\Phi}_{v} = 4uv$$
$$g_{22} = \overrightarrow{\Phi}_{v} \cdot \overrightarrow{\Phi}_{v} = 1 + 4v^{2}$$

So the metric induced by $\overrightarrow{\Phi}$ is given by:

$$g = \begin{pmatrix} 1+4u^2 & 4uv \\ 4uv & 1+4v^2 \end{pmatrix}$$

with respect to the basis $\{\overrightarrow{\Phi}_u, \overrightarrow{\Phi}_v\} = \{<1, 0, 2u >, <0, 1, 2v >\}.$

 $||X|| = \sqrt{g(X,X)}$ At (u,v) = (1,2), $g = \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix}$. $X = \langle 2, -3 \rangle$, so we can write: $g(X,X) = (2 -3) \begin{pmatrix} 5 & 8 \\ 8 & 17 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = (2 -3) \begin{pmatrix} -14 \\ -35 \end{pmatrix} = 77.$ So $||X|| = \sqrt{77}$.

Notice that X is also a vector in $T_{(1,2,5)}\mathbb{R}^3$. What is ||X|| with respect to the Euclidean metric in \mathbb{R}^3 ?

$$\vec{\Phi}_{u}(1,2) = <1, 0, 2 > \text{and } \vec{\Phi}_{v}(1,2) = <0, 1, 4 >.$$

$$X = 2\vec{\Phi}_{u}(1,2) - 3\vec{\Phi}_{v}(1,2) = 2 < 1, 0, 2 > -3 < 0, 1, 4 >.$$

$$= <2, -3, -8 >.$$

In \mathbb{R}^3 the Euclidean metric is:

$$\bar{g} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\bar{g}(X, X) = (2 \quad -3 \quad -8) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -8 \end{pmatrix}$$
$$= <2, -3, -8 > \cdot <2, -3, -8 > = 4 + 9 + 64 = 77$$

So $||X||_{\bar{g}} = \sqrt{77}$ (the same as before!).

The length of a vector using the induced metric will always be the same as the length from the Euclidean metric.

Let $X = \alpha \overrightarrow{\Phi}_u + \beta \overrightarrow{\Phi}_v$, and (g_{ij}) the induced metric. Then we have:

$$g(X,X) = (\alpha \quad \beta) \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
$$= \alpha^2 g_{11} + 2\alpha\beta g_{12} + \beta^2 g_{22}$$

Now let's use the Euclidean inner product to find $||X||^2$:

$$\begin{aligned} X \cdot X &= (\alpha \overrightarrow{\Phi}_u + \beta \overrightarrow{\Phi}_v) \cdot (\alpha \overrightarrow{\Phi}_u + \beta \overrightarrow{\Phi}_v) \\ &= \alpha^2 \overrightarrow{\Phi}_u \cdot \overrightarrow{\Phi}_u + 2\alpha \beta \overrightarrow{\Phi}_u \cdot \overrightarrow{\Phi}_v + \beta^2 \overrightarrow{\Phi}_v \cdot \overrightarrow{\Phi}_v \\ &= \alpha^2 g_{11} + 2\alpha \beta g_{12} + \beta^2 g_{22} \\ &= g(X, X). \end{aligned}$$

In fact, the above analysis leads us to why the calculation of the induced metric gives us a matrix that is positive definite.

Suppose $\overrightarrow{\Phi}: U \subseteq \mathbb{R}^n \to M \subseteq \mathbb{R}^k$ is a parametrization of an *n*-dimensional manifold M, with local coordinates $(x^1, ..., x^n)$. The induced metric from $\overrightarrow{\Phi}$ is:

$$g = (g_{ij})$$
, where $g_{ij} = \overrightarrow{\Phi}_{\chi^i} \cdot \overrightarrow{\Phi}_{\chi^j}$.

We can represent any vector $X \in T_pM$ by:

$$X = a_1 \vec{\Phi}_{x^1} + \dots + a_n \vec{\Phi}_{x^n}.$$

Thus we can say if $X \neq \vec{0}$:

$$0 < X \cdot X = (a_1 \overrightarrow{\Phi}_{x^1} + \dots + a_n \overrightarrow{\Phi}_{x^n}) \cdot (a_1 \overrightarrow{\Phi}_{x^1} + \dots + a_n \overrightarrow{\Phi}_{x^n})$$

= $\sum_{i,j=1}^n (\overrightarrow{\Phi}_{x^i} \cdot \overrightarrow{\Phi}_{x^j}) (a_i a_j)$
= $\sum_{i,j=1}^n g_{ij} (a_i a_j)$
= $g(X, X).$

Ex. Let $S^2_+ \subseteq \mathbb{R}^3$ be the upper hemisphere and $S^2_- \subseteq \mathbb{R}^3$ be the lower hemisphere parametrized by:

$$\vec{\Phi}(u,v) = \left(u, v, \sqrt{1 - u^2 - v^2}\right), \qquad u^2 + v^2 < 1$$

$$\overline{\Psi}(\bar{u},\bar{v}) = (\bar{u},\bar{v},-\sqrt{1-\bar{u}^2-\bar{v}^2}), \qquad \bar{u}^2 + \bar{v}^2 < 1$$

Let
$$f: S^2_+ \to S^2_-$$
 by:
 $f(u, v, \sqrt{1 - u^2 - v^2}) = (-v, u, -\sqrt{1 - u^2 - v^2})$

Show that f is an isometry.

Showing that f is a diffeomorphism is fairly straight-forward. Let's show that:

$$\langle X, Y \rangle_p = \langle df_p(X), df_p(Y) \rangle_{f(p)}$$

Let's start by calculating the metric on S^2_+ induced by $\overrightarrow{\Phi}$:

$$\vec{\Phi}_{u} = \left(1, 0, -\frac{u}{\sqrt{1-u^{2}-v^{2}}}\right) \text{ and } \vec{\Phi}_{v} = \left(0, 1, -\frac{v}{\sqrt{1-u^{2}-v^{2}}}\right)$$
$$g_{11} = \vec{\Phi}_{u} \cdot \vec{\Phi}_{u} = 1 + \frac{u^{2}}{1-u^{2}-v^{2}} = \frac{1-v^{2}}{1-u^{2}-v^{2}}$$
$$g_{12} = g_{21} = \vec{\Phi}_{u} \cdot \vec{\Phi}_{v} = \frac{uv}{1-u^{2}-v^{2}}$$
$$g_{22} = \vec{\Phi}_{v} \cdot \vec{\Phi}_{v} = 1 + \frac{v^{2}}{1-u^{2}-v^{2}} = \frac{1-u^{2}}{1-u^{2}-v^{2}}.$$

So given the vectors $X, Y \in T_p S^2_+$

$$X = \alpha_1 \vec{\Phi}_u + \alpha_2 \vec{\Phi}_v = <\alpha_1, \alpha_2 >$$

$$Y = \beta_1 \vec{\Phi}_u + \beta_2 \vec{\Phi}_v = <\beta_1, \beta_2 >$$

$$\langle X, Y \rangle_p = g(X, Y) = (\alpha_1 \quad \alpha_2) \begin{pmatrix} \frac{1-v^2}{1-u^2-v^2} & \frac{uv}{1-u^2-v^2} \\ \frac{uv}{1-u^2-v^2} & \frac{1-u^2}{1-u^2-v^2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

$$< X, Y >_{p} = \frac{\alpha_{1}\beta_{1}(1-v^{2})+(\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1})uv+\alpha_{2}\beta_{2}(1-u^{2})}{1-u^{2}-v^{2}}.$$

Notice that:

$$\overrightarrow{\Psi}^{-1} \circ f \circ \overrightarrow{\Phi}(u, v) = \overrightarrow{\Psi}^{-1} \left(-v, u, -\sqrt{1 - u^2 - v^2} \right) = (-v, u) = (\overline{u}, \overline{v}).$$

So $\overline{u} = -v$ and $\overline{v} = u$.

Thus:

$$df_p = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$df_p(X) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = (-\alpha_2, \alpha_1) = -\alpha_2 \Psi_{\overline{u}} + \alpha_1 \Psi_{\overline{v}}$$
$$df_p(Y) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = (-\beta_2, \beta_1) = -\beta_2 \Psi_{\overline{u}} + \beta_1 \Psi_{\overline{v}}.$$

Now we need the induced metric \bar{g} on S_{-}^{2} from $\vec{\Psi}$.

$$\begin{aligned} \overrightarrow{\Psi}_{\overline{u}} &= \left(1, 0, \frac{\overline{u}}{\sqrt{1 - \overline{u}^2 - \overline{v}^2}}\right) \text{ and } \qquad \overrightarrow{\Psi}_{\overline{v}} = \left(0, 1, \frac{\overline{v}}{\sqrt{1 - \overline{u}^2 - \overline{v}^2}}\right) \\ g_{11} &= \overrightarrow{\Psi}_{\overline{u}} \cdot \overrightarrow{\Psi}_{\overline{u}} = 1 + \frac{\overline{u}^2}{1 - \overline{u}^2 - \overline{v}^2} = \frac{1 - \overline{v}^2}{1 - \overline{u}^2 - \overline{v}^2} \\ g_{12} &= \overline{g}_{21} = \overrightarrow{\Psi}_{\overline{u}} \cdot \overrightarrow{\Psi}_{\overline{v}} = \frac{\overline{u}\overline{v}}{1 - \overline{u}^2 - \overline{v}^2} \\ g_{22} &= \overrightarrow{\Psi}_{\overline{v}} \cdot \overrightarrow{\Psi}_{\overline{v}} = 1 + \frac{\overline{v}^2}{1 - \overline{u}^2 - \overline{v}^2} = \frac{1 - \overline{u}^2}{1 - \overline{u}^2 - \overline{v}^2}. \end{aligned}$$

$$o \qquad \left(\bar{g}_{ij}\right) = \begin{pmatrix} \frac{1-\bar{v}^2}{1-\bar{u}^2-\bar{v}^2} & \frac{\bar{u}\bar{v}}{1-\bar{u}^2-\bar{v}^2} \\ \frac{\bar{u}\bar{v}}{1-\bar{u}^2-\bar{v}^2} & \frac{1-\bar{u}^2}{1-\bar{u}^2-\bar{v}^2} \end{pmatrix}.$$

$$< df_p(X), df_p(Y) >_{f(p)} = (-\alpha_2 \quad \alpha_1) \begin{pmatrix} \frac{1 - \overline{v}^2}{1 - \overline{u}^2 - \overline{v}^2} & \frac{\overline{u}\overline{v}}{1 - \overline{u}^2 - \overline{v}^2} \\ \frac{\overline{u}\overline{v}}{1 - \overline{u}^2 - \overline{v}^2} & \frac{1 - \overline{u}^2}{1 - \overline{u}^2 - \overline{v}^2} \end{pmatrix} \begin{pmatrix} -\beta_2 \\ \beta_1 \end{pmatrix}$$

$$=\frac{\alpha_2\beta_2(1-\bar{v}^2)+(-\alpha_2\beta_1-\alpha_1\beta_2)(\bar{u}\bar{v})+\alpha_1\beta_1(1-\bar{u}^2)}{1-\bar{u}^2-\bar{v}^2}.$$

But
$$\bar{u} = -v$$
 and $\bar{v} = u$ so $1 - \bar{u}^2 - \bar{v}^2 = 1 - u^2 - v^2$, and:
 $< df_p(X), df_p(Y) >_{f(p)}$
 $= \frac{\alpha_2 \beta_2 (1 - u^2) - (\alpha_2 \beta_1 + \alpha_1 \beta_2) (-v) (u) + \alpha_1 \beta_1 (1 - v^2)}{1 - u^2 - v^2}$
 $= \frac{\alpha_1 \beta_1 (1 - v^2) + (\alpha_2 \beta_1 + \alpha_1 \beta_2) (uv) + \alpha_2 \beta_2 (1 - u^2)}{1 - u^2 - v^2} = < X, Y >_p.$

Thus f is an isometry.

Given a Riemannian metric on M, one can define new, non-isometric, metrics on M by dividing an existing metric by a positive function. For example, we could take the Euclidean metric on a unit ball in \mathbb{R}^n and let:

$$g_{ii} = \frac{1}{(1 - \|x\|^2)^2}$$
 and $g_{ij} = 0$ for $i \neq j$.

Or we could take the upper half plane in \mathbb{R}^2 and let:

$$g_{ii} = \frac{1}{y^2}$$
 and $g_{ij} = 0$ for $i \neq j$.

Proposition: Every smooth manifold, M, has a Riemannian metric.