Differentiable Maps Between Manifolds- HW Problems

- 1. Let f map the unit sphere into \mathbb{R} by $f(x, y, z) = x^2$. Using the coordinate systems on S^2 given by $(u, v) = \pi_N(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$ on $S^2 - (0,0,1)$ $(\bar{u}, \bar{v}) = \pi_S(x, y, z) = (\frac{x}{1+z}, \frac{y}{1+z})$ on $S^2 - (0,0,-1)$
 - a. Find $\frac{\partial f}{\partial u}$, $\frac{\partial f}{\partial v}$, $\frac{\partial f}{\partial \overline{u}}$, $\frac{\partial f}{\partial \overline{v}}$.
 - b. Find formulas relating $\frac{\partial f}{\partial u}$ to $\frac{\partial f}{\partial \overline{u}}$ and $\frac{\partial f}{\partial \overline{v}}$, as well as $\frac{\partial f}{\partial v}$ to $\frac{\partial f}{\partial \overline{u}}$ and $\frac{\partial f}{\partial \overline{v}}$.
 - c. Consider the point on the sphere in cartesian coordinates given by $\left(-\frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Find the corresponding coordinates in (u, v) and then in (\bar{u}, \bar{v}) .
 - d. Verify that the relationships you found in parts a and b hold for this point.