Manifolds

- Def. Let U and V be open sets in \mathbb{R}^n . A differentiable function, $h: U \to V$ with a differentiable inverse $h^{-1}: V \to U$, is called a **diffeomorphism** ("differentiable" will mean C^{∞} from here on).
- Def. A subset, $M \subseteq \mathbb{R}^n$, is called a **differentiable manifold** (or just a manifold) of dimension k if for each point $x \in M$ there is an open set $W \subseteq \mathbb{R}^n$, an open set $U \subseteq \mathbb{R}^k$, and a diffeomorphism:

 $h: W \cap M \to U.$

h is called a **system of coordinates** on $W \cap M$. $h^{-1}: U \to W \cap M$ is called a **parameterization** of $W \cap M$.

The set $\{h_{\alpha}, W_{\alpha}\}$ of coordinate functions and sets W_{α} that cover M is called an **atlas**.

Ex. A point in \mathbb{R}^n is a zero dimensional manifold. An open set in \mathbb{R}^n is an *n*-dimensional manifold. Notice that if (h_1, W_1) and (h_2, W_2) are two coordinate systems on $W_1, W_2 \subseteq M$, where $h_1: W_1 \rightarrow U_1$ and $h_2: W_2 \rightarrow U_2$, then:

$$h_{12} = h_2 h_1^{-1} : h_1(W_1 \cap W_2) \to h_2(W_1 \cap W_2)$$

is a differentiable map of an open set in \mathbb{R}^k into an open set in \mathbb{R}^k , and is called a **transition function** between the coordinate systems (h_1, W_1) and (h_2, W_2) .

Def. An atlas (h_{α}, W_{α}) is called **smooth** if all of the transition functions are smooth.

Ex. Show that $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ is a (differentiable) manifold.

One way to do this is to define the following 6 parameterizations of the sphere, which cover the entire sphere.

$$\begin{split} \overrightarrow{\Phi}_{i} : V \to \mathbb{R}^{3} \text{ where } V &= \{(u, v) \in \mathbb{R}^{2} | u^{2} + v^{2} < 1\} \\ \overrightarrow{\Phi}_{1}(u, v) &= (u, v, \sqrt{1 - u^{2} - v^{2}}) & (z > 0) \\ \overrightarrow{\Phi}_{2}(u, v) &= (u, v, -\sqrt{1 - u^{2} - v^{2}}) & (z < 0) \\ \overrightarrow{\Phi}_{3}(u, v) &= (u, \sqrt{1 - u^{2} - v^{2}}, v) & (y > 0) \\ \overrightarrow{\Phi}_{4}(u, v) &= (u, -\sqrt{1 - u^{2} - v^{2}}, v) & (y < 0) \\ \overrightarrow{\Phi}_{5}(u, v) &= (\sqrt{1 - u^{2} - v^{2}}, u, v) & (x > 0) \\ \overrightarrow{\Phi}_{6}(u, v) &= (-\sqrt{1 - u^{2} - v^{2}}, u, v) & (x < 0) \end{split}$$

To show that these 6 parameterizations make S^2 into a manifold we must show:

- 1) $\overrightarrow{\Phi}_i$ is a diffeomorphism, for i = 1, ..., 6
- 2) $\bigcup_{i=1}^{6} \overrightarrow{\Phi}_{i}(V) \supseteq S^{2}$.

To show that $\overrightarrow{\Phi}_i$ is a diffeomorphism we must show:

- a. $\overrightarrow{\Phi}_i$ is one to one
- b. $\vec{\Phi}_i$ is onto its image
- c. $\overrightarrow{\Phi}_i$ and $\overrightarrow{\Phi}_i^{-1}$ are differentiable.

Let's show that
$$\Phi_1$$
 is a diffeomorphism.
a. $\overrightarrow{\Phi}_1(u, v) = \overrightarrow{\Phi}_1(u', v')$
 $(u, v, \sqrt{1 - u^2 - v^2}) = (u', v', \sqrt{1 - {u'}^2 - {v'}^2})$
So $(u, v) = (u', v')$ and $\overrightarrow{\Phi}_1$ is one to on.

- b. By definition $\overrightarrow{\Phi}_1$ maps V onto $\overrightarrow{\Phi}_1(V)$.
- c. Each $\overrightarrow{\Phi}_i$ is differentiable on V because all of the partial derivatives of all orders exist (since $u^2 + v^2 \neq 1$). The inverse functions of the $\overrightarrow{\Phi}_i$ s are just projections. For example:

$$\left(\vec{\Phi}_{1}\right)^{-1}\left(u,v,\sqrt{1-u^{2}-v^{2}}\right) = (u,v)$$

All partial derivatives of all orders exist so $(\vec{\Phi}_1)^{-1}$ is differentiable. The same holds for the other $(\vec{\Phi}_i)^{-1}$.

 $\bigcup_{i=1}^{6} \overrightarrow{\Phi}_{i}(V) \supseteq S^{2}$ because every point of S^{2} has at least one non-zero coordinate.

What do the transition functions look like? First, notice that not all $\vec{\Phi}_i(V), \vec{\Phi}_j(V)$ intersect (e.g. $\vec{\Phi}_1(V)$ is the upper hemisphere and $\vec{\Phi}_2(V)$ is the lower hemisphere). As an example, let's look at $\vec{\Phi}_1(V) \cap \vec{\Phi}_3(V)$.

$$\vec{\Phi}_{1}(V) = \text{points on } S^{2} \text{ with } z > 0$$

$$\vec{\Phi}_{3}(V) = \text{points on } S^{2} \text{ with } y > 0$$

$$\vec{\Phi}_{1}(V) \cap \vec{\Phi}_{3}(V) = \text{points on } S^{2} \text{ with } y > 0 \text{ and } z > 0.$$

$$\vec{\Phi}_{3}(u,v) = \left(u,\sqrt{1-u^{2}-v^{2}},v\right)$$

$$\vec{\Phi}_{3}^{-1}\left(u,\sqrt{1-u^{2}-v^{2}},v\right) = (u,v).$$

So $\left(\vec{\Phi}_{3}\right)^{-1}\vec{\Phi}_{1}(u,v) = \vec{\Phi}_{3}^{-1}\left(u,v,\sqrt{1-u^{2}-v^{2}}\right) = \left(u,\sqrt{1-u^{2}-v^{2}}\right).$

Other transition functions are also differentiable, thus $\{\vec{\Phi}_i^{-1}, \vec{\Phi}_i(V)\}$ for i = 1, ..., 6 is a smooth atlas for S^2 .

Stereographic Projection:

A second way to show that the unit sphere $S^2 \subseteq \mathbb{R}^3$ is a manifold is by using a stereographic projection. We start by covering S^2 with two open sets:

$$W_1 = S^2 - (0, 0, 1)$$

 $W_2 = S^2 - (0, 0, -1).$

To map W_1 onto \mathbb{R}^2 we take any point $(x, y, z) \in S^2 - (0, 0, 1)$ and imagine a line, l, through the points (x, y, z) and (0, 0, 1) (the north pole). We will map (x, y, z) to the intersection of the line, l, with the x, y-plane.

Let's find a formula for this point of intersection. A direction vector for this line is given by: $\langle x, y, z \rangle - \langle 0, 0, 1 \rangle = \langle x, y, z - 1 \rangle$. So a vector equation of the line is given by:

$$l(t) = \langle 0, 0, 1 \rangle + t \langle x, y, z - 1 \rangle = \langle tx, ty, t(z - 1) + 1 \rangle$$

where $t \in \mathbb{R}$.

This line intersects the *x*, *y*-plane when t(z - 1) + 1 = 0 or $t = \frac{1}{1-z}$. So the point of intersection with the *x*, *y*-plane is: $<\frac{x}{1-z}, \frac{y}{1-z} > .$

Thus, $\pi_1: W_1 \to \mathbb{R}^2$ by $\pi_1(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$

Next we want to show that π_1 is a diffeomorphism.

Claim: π_1 is one-to-one.

$$\pi_1(x_1, y_1, z_1) = \pi_1(x_2, y_2, z_2)$$
$$\implies \frac{x_1}{1 - z_1} = \frac{x_2}{1 - z_2} ; \frac{y_1}{1 - z_1} = \frac{y_2}{1 - z_2}$$

But notice:

$$\left(\frac{x_1}{1-z_1}\right)^2 + \left(\frac{y_1}{1-z_1}\right)^2 + 1 = \frac{x_1^2 + y_1^2 + (1-z_1)^2}{(1-z_1)^2}$$
$$= \frac{x_1^2 + y_1^2 + z_1^2 - 2z_1 + 1}{(1-z_1)^2} = \frac{2(1-z_1)}{(1-z_1)^2} = \frac{2}{1-z_1}.$$

By the same argument,
$$\left(\frac{x_2}{1-z_2}\right)^2 + \left(\frac{y_2}{1-z_2}\right)^2 + 1 = \frac{2}{1-z_2}$$
.

But then

$$\frac{2}{1-z_1} = \frac{2}{1-z_2} \quad \Rightarrow z_1 = z_2. \quad \text{Thus:}$$
$$\frac{x_1}{1-z_1} = \frac{x_2}{1-z_2} \quad \Rightarrow x_1 = x_2$$
$$\frac{y_1}{1-z_1} = \frac{y_2}{1-z_2} \quad \Rightarrow y_1 = y_2.$$

And so π_1 is one-to-one.

•

Let $(a, b) \in \mathbb{R}^2$, we must find x, y, z such that $\pi_1(x, y, z) = (a, b)$ and $(x, y, z) \in W_1$.

$$\frac{x}{1-z} = a$$
$$\frac{y}{1-z} = b.$$

As before:

$$\frac{2}{1-z} = \left(\frac{x}{1-z}\right)^2 + \left(\frac{y}{1-z}\right)^2 + 1 = a^2 + b^2 + 1$$

$$\implies \quad 1 - z = \frac{2}{a^2 + b^2 + 1}.$$

But:

$$\frac{x}{1-z} = a \Rightarrow x = a(1-z) = \frac{2a}{a^2+b^2+1}$$

$$\frac{y}{1-z} = b \Rightarrow y = b(1-z) = \frac{2b}{a^2+b^2+1}$$

$$z = 1 - \frac{2}{a^2 + b^2 + 1} = \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1}.$$

$$\implies \pi_1\left(\frac{2a}{a^2+b^2+1}, \frac{2b}{a^2+b^2+1}, \frac{a^2+b^2-1}{a^2+b^2+1}\right) = (a, b).$$

How do we know $p = \left(\frac{2a}{a^2+b^2+1}, \frac{2b}{a^2+b^2+1}, \frac{a^2+b^2-1}{a^2+b^2+1}\right) \in W_1$?

$$\left(\frac{2a}{a^2+b^2+1}\right)^2 + \left(\frac{2b}{a^2+b^2+1}\right)^2 + \left(\frac{a^2+b^2-1}{a^2+b^2+1}\right)^2 = \frac{\left(a^2+b^2+1\right)^2}{\left(a^2+b^2+1\right)^2} = 1$$

So $p \in S^2$.

 $a^2 + b^2 - 1 < a^2 + b^2 + 1$ so we know $z = \frac{a^2 + b^2 - 1}{a^2 + b^2 + 1} \neq 1$ Thus, $p \in W_1$.

In fact, we just showed that π_1^{-1} : $\mathbb{R}^2 \to S^1 - (0, 0, 1)$ by:

$$\pi_1^{-1}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right).$$

Partial derivatives of all orders exist for π_1 and π_1^{-1} , so they are both C^{∞} . Thus, π_1 is a diffeomorphism.

Similarly, $\pi_2: S^2 - (0, 0, -1) \rightarrow \mathbb{R}^2$ by: $\pi_2(x, y, z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$ is also a diffeomorphism.

Notice that $\pi_1^{-1}(\mathbb{R}^2) \cup \pi_2^{-1}(\mathbb{R}^2) \supseteq S^2$ since: $\pi_1^{-1}(\mathbb{R}^2) = S^2 - (0, 0, 1)$ $\pi_2^{-1}(\mathbb{R}^2) = S^2 - (0, 0, -1).$ Thus S^2 is a smooth manifold.

Calculating the transition function $\pi_2 \pi_1^{-1}(u, v)$ we get:

$$\pi_2 \pi_1^{-1}(u, v) = \pi_2 \quad \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right) = \left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

Def. $H^k = \{x \in \mathbb{R}^k | x_k \ge 0\}$ is called the half-space.

Ex. H^2 is the upper half plane with the *x*-axis and $H^3 = \{(x, y, z) \in \mathbb{R}^3 | z \ge 0\}.$

Def. $M \subseteq \mathbb{R}^n$ is a *k***-dimensional manifold with boundary** if each $x \in M$ has a neighborhood $W \cap M$ that is diffeomorphic to an open set $U \subseteq \mathbb{R}^k$ or diffeomorphic to $U \cap H^k$, where U is an open set in \mathbb{R}^k . The set of points in M where $W \cap M$ is diffeomorphic to $U \cap H^k$ are called **boundary points** of M.

Ex. An example of a manifold with a boundary is the half torus, M, in \mathbb{R}^3 given by:

 $\vec{\Phi}(u,v) = \left((2 + \cos v) \cos u , (2 + \cos v) \sin u , \sin v \right)$ where $(u,v) \in [0,\pi] \times [0,2\pi]$.

This is the part of the torus where $y \ge 0$.

We can cover this manifold with 4 sets:

$$\begin{split} W_1 \cap M &= \{ p \in M | 0 < v < \pi, \ 0 \le u \le \pi \} \\ W_2 \cap M &= \left\{ p \in M \left| \frac{\pi}{2} < v < \frac{3\pi}{2}, \ 0 \le u \le \pi \right\} \\ W_3 \cap M &= \{ p \in M | \pi < v < 2\pi, \ 0 \le u \le \pi \} \\ W_4 \cap M &= \left\{ p \in M \left| \frac{3\pi}{2} < v \le 2\pi \text{ or } 0 < v \le \frac{\pi}{2}, \ 0 \le u \le \pi \right\} \\ \text{Let } U_1 &= \{ (x, y) | \ 1 < x^2 + y^2 < 9 \}. \\ \text{Define:} \quad h_1 : W_1 \cap M \to U_1 \cap H^2 \\ \text{ by } h_1(x, y, z) &= (x, y). \end{split}$$

This is just the projection of M where z > 0 onto part of an annulus in the x, y-plane.

It's not hard to show that h_1 is a diffeomorphism. h_3 is the same function except it maps points in M where z < 0 on to $U_1 \cap H^2$.

 h_2 and h_4 can be gotten by first rotating $W_2 \cap M$ and $W_4 \cap M$ by $\frac{\pi}{2}$ (i.e. replace v with $v - \frac{\pi}{2}$) and then apply h_1 and h_3 respectively.

- Def. Let M be a differentiable manifold of dimension k. We say M is orientable if there is an atlas for M, $\{h_{\alpha}, W_{\alpha}\}$, such that all of the transition functions: $h_{\beta} \circ h_{\alpha}^{-1}$: $h_{\alpha}(W_{\alpha} \cap W_{\beta}) \to h_{\beta}(W_{\alpha} \cap W_{\beta})$ have positive Jacobians (i.e. det $((h_{\beta} \circ h_{\alpha}^{-1})') > 0)$.
- Ex. Consider the following atlas on S^2

$$\pi_1: S^2 - (0, 0, 1) \to \mathbb{R}^2$$
$$\pi_1(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$
$$\pi_2: S^2 - (0, 0, -1) \to \mathbb{R}^2$$
$$\pi_2(x, y, z) = \left(\frac{x}{1+z}, -\frac{y}{1+z}\right).$$

From a homework problem you will see that:

$$\pi_1^{-1}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right).$$

Thus we have:

$$(\pi_2 \circ \pi_1^{-1})(u, v) = \pi_2 \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right)$$
$$= \left(\frac{u}{u^2 + v^2}, \frac{-v}{u^2 + v^2} \right).$$

$$(\pi_2 \circ \pi_1^{-1})'(u, v) = \begin{pmatrix} \frac{u^2 - v^2}{(u^2 + v^2)^2} & \frac{-2uv}{(u^2 + v^2)^2} \\ \frac{2uv}{(u^2 + v^2)^2} & \frac{u^2 - v^2}{(u^2 + v^2)^2} \end{pmatrix}$$

$$\det((\pi_2 \circ \pi_1^{-1})') = \frac{(u^2 - v^2)^2 + 4u^2 v^2}{(u^2 + v^2)^4} = \frac{1}{(u^2 + v^2)^2} > 0$$

and finite since $\pi_1^{-1}(0,0) = (0,0,-1)$, which is not part of the domain of π_2 . Thus we can say S^2 is orientable.

Note: the atlas with $\pi_1(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$ and

 $\pi_2(x, y, z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$; the standard stereographic projection does not have:

$$\det((\pi_2 \circ \pi_1^{-1})') > 0.$$