Higher Order Tensors

Def. A set of components T_{ij} , i, j = 1, ..., n is said to be a **tensor of type** (0, 2) at a point $p \in \mathbb{R}^n$ if under a change of coordinates the components transform according to:

$$\bar{T}_{kl} = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial x^{i}}{\partial \bar{x}^{k}} \frac{\partial x^{j}}{\partial \bar{x}^{l}} T_{ij}.$$

Suppose a surface, $S \subseteq \mathbb{R}^3$, is given by:

$$\vec{\Phi}(x^1, x^2) = (f_1(x^1, x^2), f_2(x^1, x^2), f_3(x^1, x^2))$$

A surface in \mathbb{R}^3 is called regular if $\overrightarrow{\Phi}_{\chi^1} \times \overrightarrow{\Phi}_{\chi^2} \neq 0$ (This guarantees existence of a tangent plane.) where $\overrightarrow{\Phi}_{\chi^i} = \frac{\partial \overrightarrow{\Phi}}{\partial x^i}$.

Define:
$$g_{ij} = \overrightarrow{\Phi}_{x^i} \cdot \overrightarrow{\Phi}_{x^j}$$

 (g_{ij}) is called the metric tensor of $\overrightarrow{\Phi}$.

Ex. Show that (g_{ij}) is a (0, 2) tensor.

$$\bar{g}_{ij} = \vec{\Phi}_{\bar{x}^{i}} \cdot \vec{\Phi}_{\bar{x}^{j}} = \frac{\partial \vec{\Phi}}{\partial \bar{x}^{i}} \cdot \frac{\partial \vec{\Phi}}{\partial \bar{x}^{j}}$$
$$\frac{\partial \vec{\Phi}}{\partial \bar{x}^{i}} = \frac{\partial \vec{\Phi}}{\partial x^{1}} \frac{\partial x^{1}}{\partial \bar{x}^{i}} + \frac{\partial \vec{\Phi}}{\partial x^{2}} \frac{\partial x^{2}}{\partial \bar{x}^{i}}$$
$$\frac{\partial \vec{\Phi}}{\partial \bar{x}^{j}} = \frac{\partial \vec{\Phi}}{\partial x^{1}} \frac{\partial x^{1}}{\partial \bar{x}^{j}} + \frac{\partial \vec{\Phi}}{\partial x^{2}} \frac{\partial x^{2}}{\partial \bar{x}^{j}}$$

$$\begin{split} \bar{g}_{ij} &= \vec{\Phi}_{\bar{x}^{\bar{i}}} \cdot \vec{\Phi}_{\bar{x}^{\bar{j}}} = \left(\frac{\partial \vec{\Phi}}{\partial x^1} \frac{\partial x^1}{\partial \bar{x}^{\bar{i}}} + \frac{\partial \vec{\Phi}}{\partial x^2} \frac{\partial x^2}{\partial \bar{x}^{\bar{i}}}\right) \cdot \left(\frac{\partial \vec{\Phi}}{\partial x^1} \frac{\partial x^1}{\partial \bar{x}^{\bar{j}}} + \frac{\partial \vec{\Phi}}{\partial x^2} \frac{\partial x^2}{\partial \bar{x}^{\bar{j}}}\right) \\ &= \left(\frac{\partial \vec{\Phi}}{\partial x^1} \cdot \frac{\partial \vec{\Phi}}{\partial x^1}\right) \frac{\partial x^1}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^1}{\partial \bar{x}^{\bar{j}}} + \left(\frac{\partial \vec{\Phi}}{\partial x^1} \cdot \frac{\partial \vec{\Phi}}{\partial x^2}\right) \frac{\partial x^1}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^2}{\partial \bar{x}^{\bar{j}}} \\ &+ \left(\frac{\partial \vec{\Phi}}{\partial x^2} \cdot \frac{\partial \vec{\Phi}}{\partial x^1}\right) \frac{\partial x^2}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^1}{\partial \bar{x}^{\bar{j}}} + \left(\frac{\partial \vec{\Phi}}{\partial x^2} \cdot \frac{\partial \vec{\Phi}}{\partial x^2}\right) \frac{\partial x^2}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^2}{\partial \bar{x}^{\bar{j}}} \\ &= g_{11} \frac{\partial x^1}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^1}{\partial \bar{x}^{\bar{j}}} + g_{12} \frac{\partial x^1}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^2}{\partial \bar{x}^{\bar{j}}} + g_{21} \frac{\partial x^2}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^1}{\partial \bar{x}^{\bar{j}}} + g_{22} \frac{\partial x^2}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^2}{\partial \bar{x}^{\bar{j}}} \\ &\bar{g}_{ij} = \sum_{k=1}^2 \sum_{l=1}^2 g_{kl} \frac{\partial x^k}{\partial \bar{x}^{\bar{i}}} \frac{\partial x^l}{\partial \bar{x}^{\bar{i}}} . \end{split}$$

So (g_{ij}) is a (0, 2) tensor.

Ex. Let
$$\vec{\Phi}(x^1, x^2) = (x^1, x^2, (x^1)^2 + (x^2)^2)$$
.
a) Find g_{ij} with respect to (x^1, x^2)
b) Let $x^1 = \bar{x}^1 \cos \bar{x}^2$ and $x^2 = \bar{x}^1 \sin \bar{x}^2$. Find \bar{g}_{kl} by using:
 $\bar{g}_{kl} = \sum_{j=1}^2 \sum_{i=1}^2 g_{ij} \frac{\partial x^i}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^l}$.

a)
$$\vec{\Phi}_{x^1} = \frac{\partial \vec{\Phi}}{\partial x^1} = (1, 0, 2x^1) \text{ and } \vec{\Phi}_{x^2} = \frac{\partial \vec{\Phi}}{\partial x^2} = (0, 1, 2x^2)$$

 $g_{11} = \vec{\Phi}_{x^1} \cdot \vec{\Phi}_{x^1} = 1 + 4(x^1)^2$
 $g_{12} = g_{21} = \vec{\Phi}_{x^1} \cdot \vec{\Phi}_{x^2} = 4x^1x^2$
 $g_{22} = \vec{\Phi}_{x^2} \cdot \vec{\Phi}_{x^2} = 1 + 4(x^2)^2$

$$(g_{ij}) = \begin{pmatrix} 1+4(x^1)^2 & 4x^1x^2 \\ 4x^1x^2 & 1+4(x^2)^2 \end{pmatrix}.$$

b) Find $ar{g}_{kl}$

$$\bar{g}_{kl} = \sum_{j=1}^{2} \sum_{i=1}^{2} g_{ij} \frac{\partial x^{i}}{\partial \bar{x}^{k}} \frac{\partial x^{j}}{\partial \bar{x}^{l}}.$$

For \bar{g}_{11} , k = 1, l = 1 so:

$$\begin{split} \bar{g}_{11} &= \sum_{j=1}^{2} \sum_{i=1}^{2} g_{ij} \frac{\partial x^{i}}{\partial \bar{x}^{1}} \frac{\partial x^{j}}{\partial \bar{x}^{1}} \\ &= g_{11} \frac{\partial x^{1}}{\partial \bar{x}^{1}} \frac{\partial x^{1}}{\partial \bar{x}^{1}} + g_{12} \frac{\partial x^{1}}{\partial \bar{x}^{1}} \frac{\partial x^{2}}{\partial \bar{x}^{1}} + g_{21} \frac{\partial x^{2}}{\partial \bar{x}^{1}} \frac{\partial x^{2}}{\partial \bar{x}^{1}} + g_{22} \frac{\partial x^{2}}{\partial \bar{x}^{1}} \frac{\partial x^{2}}{\partial \bar{x}^{1}} \\ &\qquad \frac{\partial x^{1}}{\partial \bar{x}^{1}} = \cos \bar{x}^{2} \qquad \frac{\partial x^{1}}{\partial \bar{x}^{2}} = -\bar{x}^{1} \sin \bar{x}^{2} \\ &\qquad \frac{\partial x^{2}}{\partial \bar{x}^{1}} = \sin \bar{x}^{2} \qquad \frac{\partial x^{2}}{\partial \bar{x}^{2}} = \bar{x}^{1} \cos \bar{x}^{2} \\ \\ \bar{g}_{11} &= (1 + 4(x^{1})^{2})(\cos \bar{x}^{2})^{2} + 2(4x^{1}x^{2})(\cos \bar{x}^{2})(\sin \bar{x}^{2}) \\ &\qquad + (1 + 4(x^{2})^{2})(\sin \bar{x}^{2})^{2} \\ \\ &= (1 + 4(\bar{x}^{1}\cos \bar{x}^{2})^{2})(\cos^{2}(\bar{x}^{2})) \\ &\qquad + 8(\bar{x}^{1}\cos \bar{x}^{2})(\bar{x}^{1}\sin \bar{x}^{2})(\cos^{2}(\bar{x}^{2})) \\ &\qquad + (1 + 4(\bar{x}^{1}\sin \bar{x}^{2})^{2})(\sin^{2}(\bar{x}^{2})) \\ \\ &= 1 + 4(\bar{x}^{1})^{2}. \end{split}$$

For homework, find $\bar{g}_{12} = \bar{g}_{21}$, \bar{g}_{22} .

Def. Let $(x^1, ..., x^n)$ and $(\bar{x}^1, ..., \bar{x}^n)$ be two coordinate systems in a neighborhood of a point $p \in \mathbb{R}^n$. A set of n^{r+s} quantities $T_{j_1,...,j_s}^{i_1,...,i_r}$ is said to constitute the components of a **tensor type** (r, s) if under coordinate transformation these quantities transform according to:

$$\bar{T}_{l_1,\dots,l_s}^{k_1,\dots,k_r} = \sum_{i_1=1}^n \dots \sum_{i_r=1}^n \sum_{j_1=1}^n \dots \sum_{j_s=1}^n \frac{\partial \bar{x}^{k_1}}{\partial x^{i_1}} \dots \frac{\partial \bar{x}^{k_r}}{\partial x^{i_r}} \frac{\partial x^{j_1}}{\partial \bar{x}^{l_1}} \dots \frac{\partial x^{j_s}}{\partial \bar{x}^{l_s}} T_{j_1,\dots,j_s}^{i_1,\dots,i_r}$$

where all partial derivatives are at p. We define the **rank of the tensor** as r + s.

Einstein Summation Notation:

1) In an expression involving the product of 2 tensors we sum from 1 to *n* over any index that appears as both a subscript and a superscript. Example:

$$A_{ij}B^j$$
 means $\sum_{j=1}^n A_{ij}B^j = A_{i1}B^1 + \cdots + A_{in}B^n$

2) In a partial derivative $\frac{\partial \bar{x}^i}{\partial x^j}$, the *i* is considered a superscript and the *j* is considered a subscript. Example:

$$\bar{g}_{kl} = \frac{\partial x^i}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^l} g_{ij} \text{ means } \bar{g}_{kl} = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial x^i}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^l} g_{ij}$$

3) In a given tensor if a subscript and superscript are the same, then it means the sum from 1 to *n* over that subscript/superscript. Example:

$$C_{kj}^{ij}$$
 means $\sum_{j=1}^{n} C_{kj}^{ij} = C_{k1}^{i1} + \dots + C_{kn}^{in} = S_{k}^{i}$.

This is called a contraction of two indices. However, this convention does not apply to sums/differences of tensors. Example:

 $A^i + B^i$ or $A^i + B_i$ does not indicate a sum from 1 to *n* over the index *i*.

If we contract two indices on an (r, s) tensor, then we get an (r - 1, s - 1) tensor.

Ex. Show that if we contract on i = j for a (1, 2) tensor with components T_{jk}^i , then the result is a (0, 1) tensor $S_k = T_{ik}^i$.

Since T is a (1, 2) tensor we know (using Einstein notation):

$$\bar{T}^{i}_{jk} = \frac{\partial \bar{x}^{i}}{\partial x^{r}} \frac{\partial x^{s}}{\partial \bar{x}^{j}} \frac{\partial x^{t}}{\partial \bar{x}^{k}} T^{r}_{st} .$$

Setting i = j, we get:

$$\bar{S}_k = \bar{T}^i_{ik} = \frac{\partial \bar{x}^i}{\partial x^r} \frac{\partial x^s}{\partial \bar{x}^i} \frac{\partial x^t}{\partial \bar{x}^k} T^r_{st}$$

But $\frac{\partial \bar{x}^i}{\partial x^r} \frac{\partial x^s}{\partial \bar{x}^i} = \delta_r^s$ (see Functions from \mathbb{R}^n to \mathbb{R}^m), so we can write:

$$\bar{S}_k = \bar{T}_{ik}^i = \frac{\partial x^t}{\partial \bar{x}^k} \, \delta_r^s \, T_{st}^r = \frac{\partial x^t}{\partial \bar{x}^k} T_{rt}^r = \frac{\partial x^t}{\partial \bar{x}^k} S_t.$$

So S is a (0, 1) tensor.

Operations on Tensors:

- 1) If S and T are tensors of type (r, s), then:
 - a) W = S + T
 - b) B = aS; $a \in \mathbb{R}$ are tensors of type (r, s).

- 2) If S is a tensor of type (r, s) and T is a tensor of type (t, u), then multiplying the components of S with the components of T gives a tensor of type (r + t, s + u).
- Ex. Suppose A^i , B^j are components of contravariant vectors (i.e. (1, 0) tensors). Show that $W^{ij} = A^i B^j$ are the components of a (2, 0) tensor.

Since A^i and B^j are contravariant vectors:

$$\bar{A}^{i} = \sum_{k=1}^{n} \frac{\partial \bar{x}^{i}}{\partial x^{k}} A^{k} \qquad \bar{B}^{j} = \sum_{l=1}^{n} \frac{\partial \bar{x}^{j}}{\partial x^{l}} B^{l}.$$

Now we have:

$$\overline{W}^{ij} = \overline{A}^i \overline{B}^j = \left(\sum_{k=1}^n \frac{\partial \overline{x}^i}{\partial x^k} A^k\right) \left(\sum_{l=1}^n \frac{\partial \overline{x}^j}{\partial x^l} B^l\right)$$
$$= \sum_{k=1}^n \sum_{l=1}^n \frac{\partial \overline{x}^i}{\partial x^k} \frac{\partial \overline{x}^j}{\partial x^l} A^k B^l = \sum_{k=1}^n \sum_{l=1}^n \frac{\partial \overline{x}^i}{\partial x^k} \frac{\partial \overline{x}^j}{\partial x^l} W^{kl}$$

or in Einstein notation:

$$\overline{W}^{ij} = \frac{\partial \bar{x}^i}{\partial x^k} \frac{\partial \bar{x}^j}{\partial x^l} W^{kl}$$

So W^{ij} are the components of a (2, 0) tensor.

Theorem: Suppose that T_{ij} are the components of a (0, 2) tensor. If the $n \times n$ matrix (T_{ij}) is invertible on an open set $U \subseteq \mathbb{R}^n$ and the inverse is given by (T^{ij}) , then T^{ij} are the components of a (2, 0) tensor.