1. Let $\vec{\Phi}(x^1, x^2) = (x^1, x^2, (x^1)^2 + (x^2)^2)$. The metric tensor induced by $\vec{\Phi}$ is given by

$$
g = \begin{pmatrix} 1 + 4(x^1)^2 & 4x^1x^2 \\ 4x^1x^2 & 1 + 4(x^2)^2 \end{pmatrix}.
$$

Let $x^1 = \bar{x}^1 cos \bar{x}^2$

$$
x^2 = \bar{x}^1 \sin \bar{x}^2.
$$

Find the components of the metric tensor $\bar{g}_{12} = \bar{g}_{21}$, \bar{g}_{22} in the $\overline{x}^{1}, \overline{x}^{2}$ coordinate system. Make sure your answer is in terms of $\overline{x}^1, \overline{x}^2$.

2. Suppose that B_i are the components of a covariant vector. Show that ∂B_j $\frac{\partial B_j}{\partial x^k}-\frac{\partial B_k}{\partial x^j}$ $\frac{\partial B_{R}}{\partial x^{j}}$ are the components of a $(0,2)$ tensor.

Hint: The components of a (0,2) tensor must transform like

$$
\frac{\partial \bar{B}_j}{\partial \bar{x}^k} - \frac{\partial \bar{B}_k}{\partial \bar{x}^j} = \sum_{\alpha,\beta=1}^n \left(\frac{\partial B_\alpha}{\partial x^\beta} - \frac{\partial B_\beta}{\partial x^\alpha} \right) \frac{\partial x^\alpha}{\partial \bar{x}^j} \frac{\partial x^\beta}{\partial \bar{x}^k}.
$$

Start with the fact that $\bar{B}_j = \sum_{\alpha =1}^n B_\alpha$ $\alpha=1$ ∂x^{α} $\frac{\partial x}{\partial \bar{x}^j}$ and

 $\overline{B}_k = \sum_{\gamma=1}^n B_{\gamma}$ $\nu = 1$ ∂x^{γ} $\frac{\partial \mathcal{L}}{\partial \bar{x}^k}$ and differentiate each of the expressions. You will also need the chain rule.

3. If (g_{ij}) are the components of a $(0,2)$ tensor and A^{i}, B^{j} are each components of $(1,0)$ tensors, show that

$$
g_{ij}A^iB^j = \sum_{i,j=1}^n g_{ij}A^iB^j
$$

 is an invariant. That is, it's value does not change when you change coordinate systems. Hint: Recall that $\sum_{i=1}^{n} \frac{\partial \bar{x}^i}{\partial x^i}$ ∂x^j ∂x^k $\partial \bar{x}^{\dot{\iota}}$ $\frac{\partial x^i}{\partial x^j} \frac{\partial x^n}{\partial \bar{x}^i} = \delta^k_j$, the Kronecker delta; see the end of the class notes on functions from \mathbb{R}^n to $\mathbb{R}^m.$

- 4. Let A_{jk}^{i} be the components of a $(1,2)$ tensor on \mathbb{R}^{3} . Suppose at a point $x \in \mathbb{R}^3$, $A^i_{jk} = (i + j)k$. So, for example, $A^1_{23} = (1 + 2)3 = 9$ at x .
- a. Evaluate A_{i2}^i .
- b. Evaluate $A_{3\alpha}^{\alpha}$.
	- c. How many components does the original tensor A have?
- d. How many components does the tensor Λ have after we contract on $i=j$, i.e. A^i_{ik} ?