1. Let $\overrightarrow{\Phi}(x^1, x^2) = (x^1, x^2, (x^1)^2 + (x^2)^2)$. The metric tensor induced by $\overrightarrow{\Phi}$ is given by

$$g = \begin{pmatrix} 1+4(x^{1})^{2} & 4x^{1}x^{2} \\ 4x^{1}x^{2} & 1+4(x^{2})^{2} \end{pmatrix}.$$

Let $x^1 = \bar{x}^1 cos \bar{x}^2$

$$x^2 = \bar{x}^1 \sin \bar{x}^2.$$

Find the components of the metric tensor $\bar{g}_{12} = \bar{g}_{21}$, \bar{g}_{22} in the \bar{x}^1, \bar{x}^2 coordinate system. Make sure your answer is in terms of \bar{x}^1, \bar{x}^2 .

2. Suppose that B_i are the components of a covariant vector. Show that $\frac{\partial B_j}{\partial x^k} - \frac{\partial B_k}{\partial x^j}$ are the components of a (0,2) tensor. Hint: The components of a (0,2) tensor must transform like

$$\frac{\partial \bar{B}_{j}}{\partial \bar{x}^{k}} - \frac{\partial \bar{B}_{k}}{\partial \bar{x}^{j}} = \sum_{\alpha,\beta=1}^{n} \left(\frac{\partial B_{\alpha}}{\partial x^{\beta}} - \frac{\partial B_{\beta}}{\partial x^{\alpha}}\right) \frac{\partial x^{\alpha}}{\partial \bar{x}^{j}} \frac{\partial x^{\beta}}{\partial \bar{x}^{k}}.$$

Start with the fact that $\bar{B}_{j} = \sum_{\alpha=1}^{n} B_{\alpha} \frac{\partial x^{\alpha}}{\partial \bar{x}^{j}}$ and

 $\overline{B}_k = \sum_{\gamma=1}^n B_\gamma \frac{\partial x^\gamma}{\partial \overline{x}^k}$ and differentiate each of the expressions. You will also need the chain rule. 3. If (g_{ij}) are the components of a (0,2) tensor and A^i, B^j are each components of (1,0) tensors, show that

$$g_{ij}A^iB^j = \sum_{i,j=1}^n g_{ij}A^iB^j$$

is an invariant. That is, it's value does not change when you change coordinate systems. Hint: Recall that $\sum_{i=1}^{n} \frac{\partial \bar{x}^{i}}{\partial x^{j}} \frac{\partial x^{k}}{\partial \bar{x}^{i}} = \delta_{j}^{k}$, the Kronecker delta; see the end of the class notes on functions from \mathbb{R}^{n} to \mathbb{R}^{m} .

- 4. Let A_{jk}^i be the components of a (1,2) tensor on \mathbb{R}^3 . Suppose at a point $x \in \mathbb{R}^3$, $A_{jk}^i = (i + j)k$. So, for example, $A_{23}^1 = (1 + 2)3 = 9$ at x.
 - a. Evaluate A_{i2}^i .
 - b. Evaluate $A^{\alpha}_{3\alpha}$.
 - c. How many components does the original tensor A have?
 - d. How many components does the tensor A have after we contract on i = j, i.e. A_{ik}^{i} ?