Contravariant and Covariant Vectors- HW Problems

1. Suppose that A is a contravariant vector on \mathbb{R}^2 and that $A = \langle x^1 x^2, (x^2)^2 \rangle$ in the x^1, x^2 coordinate system. Find the components of A in the new coordinate system given by

$$\bar{x}^1 = (x^2)^3$$

 $\bar{x}^2 = x^1 + 2x^2$

in terms of \bar{x}^1 , \bar{x}^2 .

 Suppose that A is a contravariant vector on ℝ² and that
 A =< x², x¹x² > in the x¹, x² coordinate system. Find the
 components of A in the x̄¹, x̄² coordinate system in terms of
 x̄¹, x̄² if

$$x^{1} = e^{\left(\overline{x}^{1} + \overline{x}^{2}\right)}$$
$$x^{2} = e^{\left(\overline{x}^{1} - \overline{x}^{2}\right)}.$$

3. Let $f: \mathbb{R}^2 \to \mathbb{R}$, where $f(x, y) = x^2 + y^3$. Calculate ∇f in the new coordinate system (r, θ) where

$$x = rcos\theta$$
$$y = rsin\theta$$

by using the fact that ∇f is a covariant vector. Make sure your answer is in terms of r and θ . 4. Suppose *B* is a covariant vector in \mathbb{R}^2 and that

 $B = \langle x^2, x^1 + 3x^2 \rangle$ in the x^1, x^2 coordinate system. Find B in the new coordinate system $\overline{x}^1, \overline{x}^2$ (as in problem 1) if

$$\bar{x}^1 = (x^2)^3$$
$$\bar{x}^2 = x^1 + 2x^2$$

Make sure your answer is in terms of \overline{x}^{1} , \overline{x}^{2} .