Vector Fields Along Curves

Given a curve, $\gamma(t)$, on a smooth manifold M and a vector $V_0 \in T_{\gamma(t_0)}M$ we want to be able to say what it means to transport V_0 in a "parallel" fashion along the curve $\gamma(t)$ to a vector $V_1 \in T_{\gamma(t_1)}M$. This notion of "parallel transport" will become important when we discuss the Riemann curvature tensor on M . it's also important in the discussion of geodesic curves on a manifold.

Def. Let M be a smooth manifold and $\gamma: I \to M$ be a smooth curve in M where I is an interval in $\mathbb R$. We call V a **vector field along** γ if for each $t \in I$, $V(t) \in T_{\gamma(t)}M$ and V defines a smooth map $I \to TM$. We denote the set of all smooth vector fields on M along γ by $\chi_\gamma(M).$

A vector field along a curve is not necessarily the restriction of a vector field on M to ν . For example, whenever a curve self-intersects:

is the restriction of is not the restriction of a vector field on M . \Box a vector field on M .

Vector field along γ that Vector fields along γ that

We defined a connection on Mas a map, $\nabla: \chi(M) \times \chi(M) \to \chi(M)$. Now we want to define a map $D_t \colon \chi_\gamma(M) \to \chi_\gamma(M).$

- Def. Let M be a smooth manifold with a connection ∇ and $\gamma: I \to M$ a smooth curve on M , then the unique map $D_t\colon \chi_\gamma(M)\to \chi_\gamma(M)$ such that:
	- 1) $D_t(V + W) = D_t(V) + D_t(W)$
	- 2) $D_t(fV) = \left(\frac{df}{dt}\right)$ $\frac{dI}{dt}$)V + (f)($D_t(V)$)
	- 3) If V extends to a vector field $Y \in \chi(M)$, then $D_t(V) = \nabla_{\gamma'(t)}(Y)$

is called the **covariant derivative along** γ .

If D_t exists, we can use properties 1, 2, and 3 to find a formula for it. Let U be a coordinate patch on M with coordinates $(x^1,...,x^n).$ For any $V\in \chi_\gamma(M)$ we can write:

$$
V = v^i \partial_i = v^i \frac{\partial}{\partial x^i}; \qquad v^i \in C^\infty(I).
$$

By conditions 1 and 2:

$$
D_t(V) = D_t(v^i \partial_i) = \dot{v}^i \partial_i + v^i D_t(\partial_i) \text{ where } \dot{v}^i = \frac{dv^i}{dt}
$$

If we write $\gamma(t) = (\gamma^1(t), \gamma^2(t), ..., \gamma^n(t)), \text{ i.e., } x^j = \gamma^j(t),$ then:

$$
\gamma'(t) = \sum_{j=1}^n \dot{\gamma}^j \, \partial_j \, .
$$

By condition 3:

$$
D_t(\partial_j) = \nabla_{\gamma'(t)}(\partial_j) = \sum_{i=1}^n (\dot{\gamma}^i) \nabla_{\partial_i}(\partial_j) = \dot{\gamma}^i(\Gamma_{ij}^k)(\partial_k).
$$

.

Thus we have:

$$
D_t(V) = (\dot{v}^j)\partial_j + (\Gamma^k_{ij}(\dot{v}^i)(v^j)\partial_k) = (\dot{v}^k + \Gamma^k_{ij}(\dot{v}^i)(v^j))\partial_k.
$$

To show that D_t exists, one can start with this formula and show it satisfies conditions 1, 2, and 3.

Def. Let M be a smooth manifold with a connection ∇ and let $\gamma: I \to M$ be a smooth curve on $M.$ A vector field V along γ is called **parallel** if $D_t(V) = 0$ for all $t \in I$.

Proposition: Let M be a smooth manifold with a connection ∇ and let

 $\gamma: I \to M$ be a smooth curve on M, where I is a compact (i.e. closed and bounded) interval of ℝ. Let $t_0 \in I$, set $p = \gamma(t_0)$, and let V_0 be any vector in T_pM . There exists a unique vector field of M along γ that is parallel and has $V(t_0) = V_0$.

In this case, we are parallel transporting the vector V_0 along γ . That is, $V(t)$ is the parallel transport of V_0 along γ . The existence and uniqueness of this vector field along γ comes from the existence of a unique solution to a system of differential equations. Specifically, if $V(t)=\big(v^{1}(t),...,v^{n}(t)\big)$, then we need to show there is a unique $V(t)$ such that:

$$
\dot{v}^k + \Gamma_{ij}^k \dot{v}^i v^j = 0 \text{ for } k = 1, ..., n \text{ with } V(t_0) = (v^1(t_0), ..., v^n(t_0))
$$

This comes from a theorem in differential equations.

Ex. Let $M = \mathbb{R}^2$ with the standard metric. Then $\Gamma_{ij}^k = 0$ and if $V_0=(v_0^1,v_0^2)$ our parallel vector field $V(t)$ must satisfy: $D_t(V^j) = 0 = \frac{dv^j}{dt}$ $\frac{dv}{dt}$; $j = 1,2.$ Thus we have: $\; V(t) = \left(v^1(t), v^2(t) \right) = (v_0^1, v_0^2).$

Since the components of $V(t)$ are constant, if we parallel transport any vector around any closed curve γ on M we get back to the same vector. For general manifolds this does not happen, in fact, the failure to return to the same vector is a measure of curvature.

Saying $V(t)$ is a parallel vector field along γ means that $D_t(V)$ only has components in normal directions to the tangent space $T_{\gamma(t)}M$. That is, if we project $D_t(V)$ on to $T_{\gamma(t)}M$ we get the zero vector. Thus $V(t)$ is changing just as $T_{\gamma(t)}M$ is changing as t changes.

Suppose a person is standing at the north pole of a sphere (the point $(0, 0, 1)$ with a bow and arrow pointing parallel to the x-axis – we'll think of the arrow as the vector we are parallel transporting (the vector $<-1,0,0>$). If the person now walks, without turning, along the line of longitude $\theta = \pi$ towards the equator (the point $(-1, 0, 0)$), then the arrow will be pointing down, that is, parallel to the z-axis (the vector $< 0, 0, -1 >$) at the point $(-1,0,0)$.

If the person does not turn and walks (sideways) 1 $\frac{1}{4}$ of the way around the sphere to the point $(0, -1, 0)$, their arrow will continue to point straight down, parallel to the z -axis.

Now the person walks back to the north pole (without turning, thus they are walking backwards) along the line of longitude $\theta =$. When they get to the north pole, the arrow is now parallel to the y-axis (the vector $< 0, -1, 0 >$), which is different from the beginning when the arrow was parallel to the x -axis (the vector $<-1,0,0>$).

Ex. Let $S^2 \subseteq \mathbb{R}^3$ be the unit sphere where:

$$
\vec{\Phi}(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
$$

$$
0 \le \theta \le 2\pi, \quad 0 \le \phi \le \pi.
$$

Parallel transport the vector $< 0, 1 >$ at the point $\left(0, \frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right)$ to the north pole along the following two paths and show that they are different vectors.

- 1) Path 1: along $\theta = 0$, $\phi = \frac{\pi}{2}$ $\frac{\pi}{2} - t$, $0 \le t \le \frac{\pi}{2}$ 2
- 2) Path 2: along $\theta = t$, $\phi = \frac{\pi}{2}$ $\frac{\pi}{2}$, $0 \le t \le \frac{\pi}{2}$ 2^2 2 and then along $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}$, $\phi = \frac{\pi}{2}$ $\frac{\pi}{2} - t$, $0 \le t \le \frac{\pi}{2}$ $\frac{\pi}{2}$.

1) $\gamma(t) = \left(0, \frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}-t\right)$; $0 \leq t \leq \frac{\pi}{2}$ 2

Notice that $\gamma(0) = \left(0, \frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right)$, which is $(1,0,0)$ in \mathbb{R}^3 and $\gamma\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}$ = (0, 0), which is $(0,0,1)$ in $\mathbb{R}^3.$ We have seen that for $\overrightarrow{\Phi}$ we have:

$$
\vec{\Phi}_{\theta} = \langle -\sin \theta \sin \phi, \cos \theta \sin \phi, 0 \rangle
$$

$$
\vec{\Phi}_{\phi} = \langle \cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi \rangle
$$

So the vector $< 0, 1>$ $=$ $\overrightarrow{\Phi}_{\phi}$ at $\gamma(0)$ $=$ $\left(0,\frac{\pi}{2}\right)$ $\frac{\pi}{2}$ is $\overrightarrow{\Phi}_{\phi}\left(0,\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right) = 0, 0, -1 > \text{in } \mathbb{R}^3.$

We also know:

$$
g = \begin{pmatrix} \sin^2 \phi & 0 \\ 0 & 1 \end{pmatrix}
$$

$$
\Gamma_{21}^1 = \Gamma_{12}^1 = \cot \phi
$$

$$
\Gamma_{11}^2 = -\sin \phi \cos \phi
$$

$$
\Gamma_{ij}^k = 0 \text{ otherwise.}
$$

To parallel transport $< 0, 1>$ we solve $D_t V = \dot{v}^k + \Gamma^k_{ij} (\dot{\gamma}^i) v^j = 0$ where $V(t) = \langle v^1(t), v^2(t) \rangle$; $V(0) = \langle v^1(0), v^2(0) \rangle = \langle 0, 1 \rangle$. $\gamma(t) = (\gamma^1(t), \gamma^2(t)) = (0, \frac{\pi}{2})$ $\frac{1}{2} - t$ $\gamma'(t) = (\dot{\gamma}^1(t), \dot{\gamma}^2(t)) = (0, -1).$

$$
k = 1: \t\t \dot{v}^{1} + \Gamma_{ij}^{1}(\dot{v}^{i})v^{j} = 0
$$

$$
\dot{v}^{1}(t) = 0; \t \dot{v}^{2}(t) = -1,
$$

so
$$
\dot{v}^{1} + \Gamma_{2j}^{1}(-1)v^{j} = 0.
$$

$$
\Gamma_{21}^1 = \cot \phi \, ; \quad \Gamma_{22}^1 = 0,
$$

thus we have
$$
\dot{\nu}^1 - (\cot \phi) \nu^1 = 0.
$$

$$
\gamma(t) = \left(0, \frac{\pi}{2} - t\right) = (\theta, \phi)
$$

e $\frac{\pi}{2} - t = \phi$ so,

since

$$
\dot{v}^1 - \left(\cot(\frac{\pi}{2} - t)\right)v^1 = 0
$$

$$
\dot{v}^1 - (\tan t)v^1 = 0.
$$

$$
\dot{v}^1 = (\tan t)v^1
$$

$$
\frac{\dot{v}^1}{v^1} = \tan t
$$

$$
\int \frac{\dot{v}^1}{v^1} dt = \int (\tan t) dt = \int \frac{\sin t}{\cos t} dt
$$

$$
\ln v^{1} + c_{1} = -\ln(\cos t) + c_{2}
$$

$$
\ln v^{1} = -\ln(\cos t) + c_{3}
$$

$$
v^{1} = e^{-\ln(\cos t) + c_{3}} = c_{4} \sec t.
$$

$$
v^1(0) = c_4(1) = 0 \Rightarrow c_4 = 0 \Rightarrow v^1(t) = 0.
$$

$$
k = 2: \t\t \dot{v}^2 + \Gamma_{ij}^2 (\dot{v}^i) v^j = 0
$$

\n
$$
\dot{v}^1(t) = 0; \t\t \dot{v}^2(t) = -1.
$$

\n
$$
\Rightarrow \t\t \dot{v}^2 - \Gamma_{2j}^2 v^j = 0.
$$

\n
$$
\Gamma_{21}^2 = \Gamma_{22}^2 = 0
$$

\n
$$
\Rightarrow \t\t \dot{v}^2 = 0.
$$

\n
$$
\Rightarrow \t\t \dot{v}^2 = c.
$$

\n
$$
v^2(0) = 1
$$

\n
$$
\Rightarrow \t\t \dot{v}^1(t) = 0.
$$

 \Rightarrow $V(t) = 0, 1 > = \vec{\Phi}_{\phi}(t).$

At the north pole $\theta = 0$, $\phi = 0$, and:

$$
\vec{\Phi}_{\phi}(0,0) = \langle \cos 0 \rangle (\cos 0), (\sin 0)(\sin 0), -\sin 0 \rangle = \langle 1, 0, 0 \rangle_{\mathbb{R}^3}
$$

So the parallel transport of $< 0, 1 >$ at the point $\theta = 0, \; \; \phi = \frac{\pi}{2}$ $\frac{\pi}{2}$ (which in \mathbb{R}^3 is $(1, 0, 0)$ and $< 0, 1 > = < 0, 0, -1 >$ to the north pole $(\theta = 0, \phi = 0)$ is again the vector $< 0, 1 >$. However, at $\theta = 0, \phi = 0$:

$$
<0, 1> \,=\, \overrightarrow{\Phi}_{\phi}(0,0)=\, <1, 0, 0> \, \in \mathbb{R}^{3}.
$$

2) First parallel transport $< 0, 1 >$ at $\theta = 0, \; \phi = \frac{\pi}{2}$ $\frac{\pi}{2}$ to $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}$, $\phi = \frac{\pi}{2}$ 2 along ${\gamma}_1(t)=\left(t,\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right)$; $0 \le t \le \frac{\pi}{2}$ 2 $\boldsymbol{\chi}$ \mathcal{V} $(1,0,0)$ $< 0.0, -1 >$ $(0,1,0)$ $< 0.0, -1 >$ $(0,0,1)$ $< 0.1, 0 >$ $\gamma_2(t)$ $\gamma_1(t)$

We must solve the differential equations:

$$
D_t V = \dot{v}^k + \Gamma_{ij}^k (\dot{\gamma}_1^i) (v^j) = 0 \text{ where } \dot{\gamma}_1(t) = (1, 0).
$$

\n
$$
k = 1: \qquad \dot{v}^1 + \Gamma_{ij}^1 (\dot{\gamma}_1^i) (v^j) = 0.
$$

\n
$$
\dot{\gamma}_1^1(t) = 1; \qquad \dot{\gamma}_1^2(t) = 0
$$

\n
$$
\Rightarrow \qquad \dot{v}^1 + \Gamma_{1j}^1 (v^j) = 0.
$$

\n
$$
\Gamma_{11}^1 = 0; \qquad \Gamma_{12}^1 = \cot \phi
$$

\n
$$
\Rightarrow \qquad \dot{v}^1 + (\cot \phi) v^2 = 0.
$$

But $\phi = \frac{\pi}{2}$ $\frac{\pi}{2}$ so $\cot \phi = 0$, and thus we get $\dot{v}^1 = 0 \Rightarrow v^1 = \text{constant}$, and since $v^1(0) = 0$, $\implies v^1(t) = 0$.

$$
k = 2: \t\t \dot{v}^2 + \Gamma_{ij}^2 (\dot{\gamma}_1^i)(v^j) = 0.
$$

$$
\dot{\gamma}_1^1(t) = 1; \t\t \dot{\gamma}_1^2(t) = 0
$$

$$
\Rightarrow \t\t \dot{v}^2 + \Gamma_{1j}^2 (\dot{\gamma}_1^1)(v^j) = 0.
$$

$$
\Gamma_{11}^2 = -(\sin \phi) \cos \phi; \quad \Gamma_{12}^2 = 0
$$

But for $\phi = \frac{\pi}{2}$ $\frac{\pi}{2}$, $\cos \phi = 0$ so $\Gamma_{11}^2 = 0$, and $\dot{v}^2 = 0 \Rightarrow v^2(t) = \text{constant}$, and since $v^2(0) = 1$, $\implies v^2(t) = 1$.

$$
V(t) = \langle 0, 1 \rangle \text{ along } \gamma_1(t) = \left(t, \frac{\pi}{2}\right).
$$

at $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$: $\langle 0, 1 \rangle = \overrightarrow{\Phi}_{\phi}\left(\frac{\pi}{2}, \frac{\pi}{2}\right) = \langle 0, 0, -1 \rangle \in \mathbb{R}^3.$

So the parallel transport of $< 0, 1 >$ at $\left(0, \frac{\pi}{2}\right)$ $\binom{n}{2}$ (which is $< 0, 0, -1 >$ at $(1,0,0)$ in \mathbb{R}^3) to $\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$ along $\gamma_1(t)$ is the vector: $< 0, 1 > \; = \; < 0, 0, -1 >_{\mathbb{R}^3}$ at $\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$.

Now we need to parallel transport $< 0, 1 >$ along the curve:

 $\gamma_2(t) = \left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\left(\frac{\pi}{2} - t\right); \quad 0 \leq t \leq \frac{\pi}{2}$ 2 from the point $\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\left(\frac{\pi}{2}\right)=(0,1,0)\in\mathbb{R}^3$ to $\left(\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2},0\right) = (0,0,1) \in \mathbb{R}^3.$ $\dot{\gamma}_2 = (0, -1)$; $\dot{\gamma}_2^1 = 0$; $\dot{\gamma}_2^2 = -1$. $D_t V = \dot{v}^k + \Gamma_{ij}^k (\dot{v}_2^i)(v^j) = 0.$

 $k = 1$: $1 + \Gamma_{ij}^1(\dot{\gamma}_2^i)(v^j) = 0$ $\dot{v}^1 + \Gamma^1_{2j}(-1)(v^j) = 0.$

$$
\Gamma_{21}^1 = \cot \phi \, ; \qquad \Gamma_{22}^1 = 0
$$

$$
\Rightarrow \qquad \dot{v}^1 - (\cot \phi) v^1 = 0.
$$

$$
\phi = \frac{\pi}{2} - t
$$

\n
$$
\Rightarrow \quad \dot{v}^1 - \left(\cot(\frac{\pi}{2} - t)\right)v^1 = 0
$$

\n
$$
\dot{v}^1 - (\tan t)v^1 = 0.
$$

\n
$$
\Rightarrow \quad \dot{v}^1 = (\tan t)v^1;
$$

$$
\frac{\dot{v}^1}{v^1} = \frac{\sin t}{\cos t}
$$

$$
\int \frac{\dot{v}^1}{v^1} dt = \int \frac{\sin t}{\cos t} dt
$$

\n
$$
\ln v^1 = -\ln \cos t + c
$$

\n
$$
v^1 = e^{-\ln(\cos t) + c} = c_2 \sec t.
$$

$$
0 = v1(0) = c2(\sec 0) = c2; \implies v1(t) = 0.
$$

$$
k = 2: \t\t \dot{v}^2 + \Gamma_{ij}^2 (\dot{y}_2^i)(v^j) = 0
$$

\n
$$
\dot{y}_2^1 = 0; \t\t \dot{y}_2^2 = -1
$$

\n
$$
\Rightarrow \t\t \dot{v}^2 + \Gamma_{2j}^2 (-1)(v^j) = 0.
$$

\n
$$
\Gamma_{21}^2 = 0 = \Gamma_{22}^2
$$

\n
$$
\Rightarrow \t\t \dot{v}^2 = 0 \text{ and } v^2(t) = \text{constant.}
$$

\n
$$
1 = v^2(0) = \text{constant}
$$

\n
$$
v^2(t) = 1.
$$

\n
$$
V(t) = \langle 0, 1 \rangle.
$$

Thus $< 0, 1 >$ at the point $\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\left(\frac{\pi}{2}\right) = (0, 1, 0)$ is parallel transported to $< 0, 1 >$ at the point $\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}$, 0) = (0, 0, 1).

However, at
$$
\left(\frac{\pi}{2}, \frac{\pi}{2}\right)
$$
:
\n
$$
<0, 1> = \overrightarrow{\Phi}_{\phi}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)
$$
\n
$$
= <0, 0, -1>_{\mathbb{R}^3}.
$$

But at
$$
\left(\frac{\pi}{2}, 0\right)
$$
:
\n
$$
<0, 1> = \vec{\Phi}_{\phi}\left(\frac{\pi}{2}, 0\right) < \left(\cos\frac{\pi}{2}\right)(\cos 0), \left(\sin\frac{\pi}{2}\right)(\cos 0), -\sin 0>
$$
\n
$$
= <0, 1, 0>_{\mathbb{R}^{3}}.
$$

Thus, along γ_1 and then γ_2 , the vector $< 0, 1 > = < 0, 0, -1 >_{\mathbb{R}^3}$ at $\left(0,\frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right)$ get parallel transported to $< 0, 1 > \, = \, < 0, 1, 0 >_{\mathbb{R}^3}$ at $\left(\frac{\pi}{2}\right)$ $(\frac{\pi}{2},0).$

Note: this is different from the vector, $< 1, 0, 0 >_{\mathbb{R}^3}$, from part 1.

Ex. Let $S^2 \subseteq \mathbb{R}^3$ be the unit sphere where:

$$
\vec{\Phi}(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
$$

$$
0 \le \theta \le 2\pi, \quad 0 \le \phi \le \pi.
$$

Parallel transport the vector $< 1, 0 >$ at the point $\left(0, \frac{\pi}{2}\right)$ $\frac{\pi}{2}$) along

1) Path 1: along $\theta = 0$, $\phi = \frac{\pi}{2}$ $\frac{\pi}{2} - t$, $0 \le t \le \frac{\pi}{2}$ $\frac{\pi}{2}$ (to the north pole). 2) Path 2: along $\theta = t$, $\phi = \frac{\pi}{2}$ $\frac{\pi}{2}$, 0 $\leq t \leq 2\pi$ (around the equator).

 $< 1, 0 > = \overrightarrow{\Phi}_{\theta}\left(0, \frac{\pi}{2}\right)$ $\left(\frac{\pi}{2}\right)$ = < 0,1,0 > $\left[\frac{\pi}{2}\right]$. Along path 1 we have: $\gamma_1(t) = \left(0, \frac{\pi}{2}\right)$ $\frac{\pi}{2}-t\big);$ So we have: $\gamma_1^1(t) = 0$ $\gamma_1^2(t) = \frac{\pi}{2}$ $\frac{\pi}{2}-t$ $\gamma_1^1(t) = 0$ $\dot{\gamma}_1^2(t) = -1$ $\Gamma_{21}^1 = \Gamma_{12}^1 = \cot \phi$, $\Gamma_{11}^2 = -(sin\phi)(cos\phi)$, other $\Gamma_{ij}^k = 0$. $k = 1$ $\dot{v}^1 + \Gamma_{ij}^1(\dot{y}_1^i)v^j = \dot{v}^1 - \Gamma_{21}^1v^1 - \Gamma_{22}^1v^2 = 0$ $\Gamma_{21}^1 = \cot \phi$, $\Gamma_{22}^1 = 0$, so we get: $\dot{v}^1 - (\cot \phi)v^1 = 0.$ Since $\phi = \frac{\pi}{2}$ $\frac{\pi}{2}$ – t we have: $\dot{v}^1 - (\cot(\frac{\pi}{2}))$ $(\frac{\pi}{2}-t)$) $v^1=0$ $\dot{v}^1 - (\tan(t)) v^1 = 0.$ \dot{v} $1 = (\tan(t)) v^1$ \dot{v}^1 $\frac{\dot{v}^1}{v^1} = \frac{\sin(t)}{\cos(t)}$ $\frac{\sin(t)}{\cos(t)}$. Integrating both sides we get:

 $\ln(v^1) + c_1 = -\ln(\cos(t)) + c_2$ $\ln(v^1) = -\ln(\cos(t)) + c_3$ \Rightarrow v $1(t) = e^{-\ln(\cos(t)) + c_3}$ $\mathcal V$ $1(t) = c_4 \sec(t)$.

$$
V(0) = < v1(0), v2(0) > = < 1, 0 >
$$
, so we have:

$$
1 = v1(0) = c4 sec(0) = c4 and
$$

$$
v1(t) = sec(t).
$$

$$
k = 2 \t\t \dot{v}^2 + \Gamma_{ij}^2 (\dot{\gamma}_1^i) v^j = \dot{v}^2 - \Gamma_{21}^2 v^1 - \Gamma_{22}^2 v^2 = 0.
$$

But $\Gamma_{21}^2 = \Gamma_{22}^2 = 0$, so we have:

$$
\dot{v}^2 = 0 \quad \Rightarrow \quad v^2(t) = c.
$$

$$
v^2(0) = 0 \quad \Rightarrow \quad v^2(t) = 0.
$$

Thus the parallel vector field in the basis $\{\overrightarrow{\Phi}_\theta,\overrightarrow{\Phi}_\phi\}$ is: $V(t) = \langle \sec(t), 0 \rangle.$

In \mathbb{R}^3 this becomes:

$$
V(t) = \langle \sec(t), 0 \rangle = (\sec(t)) \overrightarrow{\Phi}_{\theta}(t)
$$

= (\sec(t))($\langle -\sin(\theta)(\sin(\phi))\rangle$, $\cos(\theta)(\sin(\phi))\rangle$, $0 > .$

$$
\theta = 0, \qquad \phi = \frac{\pi}{2} - t.
$$

$$
V(t) = (\sec(t)) (\le 0, \cos(0) \left(\sin\left(\frac{\pi}{2} - t\right) \right), 0 >)
$$

= (\sec(t)) (< 0, \cos(t), 0 > = < 0, 1, 0 >_{\mathbb{R}^3}.

So with respect to the standard basis in \mathbb{R}^3 we have: $V(t) = < 0,1,0>.$

Along path 2 we have:

$$
\theta = t, \quad \phi = \frac{\pi}{2}; \text{ ie } \gamma_2(t) = \left(t, \frac{\pi}{2}\right) \Rightarrow \gamma_2^1(t) = t, \quad \gamma_2^2(t) = \frac{\pi}{2}
$$

\n
$$
\dot{\gamma}_2^1 = 1 \qquad \dot{\gamma}_2^2 = 0.
$$

\n
$$
k = 1 \qquad \dot{v}^1 + \Gamma_{ij}^1(\dot{\gamma}_1^i)v^j = \dot{v}^1 + \Gamma_{11}^1v^1 + \Gamma_{12}^1v^2 = 0;
$$

\n
$$
\Gamma_{11}^1 = 0, \quad \Gamma_{12}^1 = \cot \phi, \quad \text{but } \phi = \frac{\pi}{2}, \text{ so } \cot \phi = 0.
$$

\n
$$
\Rightarrow \qquad \dot{v}^1 = 0 \qquad \Rightarrow \qquad v^1(t) = c.
$$

\nBut $v^1(0) = 1$ so $v^1(t) = 1$.
\n
$$
k = 2 \qquad \dot{v}^2 + \Gamma_{ij}^2(\dot{\gamma}_1^i)v^j = \dot{v}^2 - \Gamma_{11}^2v^1 - \Gamma_{12}^2v^2 = 0.
$$

\n
$$
\Gamma_{11}^2 = -(sin\phi)(cos\phi), \qquad \Gamma_{12}^2 = 0.
$$

\n
$$
\dot{v}^2 - (sin\phi)(cos\phi) = 0.
$$

\nBut $\phi = \frac{\pi}{2}$ so $cos\phi = 0$.
\n
$$
\dot{v}^2 = 0 \qquad \Rightarrow \qquad v^2(t) = c.
$$

\n
$$
v^2(0) = 0 \qquad \Rightarrow \qquad v^2(t) = 0.
$$

Thus we have in the basis $\{\overrightarrow{\Phi}_\theta,\overrightarrow{\Phi}_\phi\}$:

$$
V(t) = <1,0>.
$$

In the standard basis for \mathbb{R}^3 we have:

$$
V(t) = <1,0> = \vec{\Phi}_{\theta}(t)
$$

= $-\sin(\theta) (\sin(\phi))$, $\cos(\theta) (\sin(\phi))$, 0 >
= $-\sin(t)$, $\cos(t)$, 0 >.