Vector Fields Along Curves- HW Problems

1. Let S^2 be the unit sphere in \mathbb{R}^3 . On the coordinate patch $(x^1, x^2) \in (0, 2\pi) \times (0, \pi)$ the metric is given by

$$g = \begin{pmatrix} \sin^2 x^2 & 0 \\ 0 & 1 \end{pmatrix}.$$

and the Christoffel symbols are:

$$\Gamma_{21}^1 = \Gamma_{12}^1 = cotx^2$$
, $\Gamma_{11}^2 = -sinx^2 cosx^2$, $\Gamma_{jk}^i = 0$ otherwise.

Let *p* be the point on the sphere given by $x^1 = x_0^1$, $x^2 = x_0^2$. Let *V*(*t*) be a vector field on *S*² with *V*(*p*) = < V_0^1 , V_0^2 >.

Calculate the parallel transport vector field $V(t) = \langle V^1(t), V^2(t) \rangle$ along the curve $\gamma(t) = (x_0^1, t)$, using the initial condition $\gamma(t_0) = (x_0^1, x_0^2)$.

Show that the length of V(t) with respect to g is constant.

2. Let *S* be the portion of the cone in \mathbb{R}^3 given by $\vec{\Phi}(u, v) = (ucosv, usinv, u), \quad u > 0.$

The induced metric is $g = \begin{pmatrix} 2 & 0 \\ 0 & u^2 \end{pmatrix}$ and the non-zero Christoffel symbols are $\Gamma_{21}^2 = \Gamma_{12}^2 = \frac{1}{u}$, $\Gamma_{22}^1 = -\frac{u}{2}$.

Let $\gamma(t) = (u_0, t)$, be the circle of radius u_0 in local cooradinates (u, v). At t = 0 let $V(0) = \langle V_0^1, V_0^2 \rangle$ be a vector in $T_{\overrightarrow{\Phi}(u_0, 0)}S$.

Write down the explicit differential equations, but DON'T solve them, that describe the parallel transported vector field V(t).