Connections and Covariant Differentiation

We saw an example earlier of a vector field being a contravariant vector. This is true in general for vector fields on a manifold. Let $\chi(M)$ be the space of all smooth vector fields on an *n*-dimensional manifold, M. If $X \in \chi(M)$, then in local coordinates x^1, \ldots, x^n we can write:

$$X = \sum_{i=1}^{n} A^{i}(x) \frac{\partial}{\partial x^{i}} \, .$$

Recall that if $\overrightarrow{\Phi}: U \subseteq \mathbb{R}^n \to M \subseteq \mathbb{R}^k$, then $\frac{\partial}{\partial x^i}$ means $\frac{\partial \overrightarrow{\Phi}}{\partial x^i}$.

If $\bar{x}^1, \ldots, \bar{x}^n$ are another set of local coordinates, then by the Chain Rule we can write:

$$\frac{\partial}{\partial x^{i}} = \sum_{j=1}^{n} \frac{\partial \bar{x}^{j}}{\partial x^{i}} \frac{\partial}{\partial \bar{x}^{j}} = \frac{\partial \bar{x}^{j}}{\partial x^{i}} \frac{\partial}{\partial \bar{x}^{j}}$$

Thus:

$$X = \sum_{i=1}^{n} A^{i}(x) \frac{\partial}{\partial x^{i}} = \sum_{i=1}^{n} \sum_{j=1}^{n} A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}} \frac{\partial}{\partial \bar{x}^{j}} = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}} \right) \frac{\partial}{\partial \bar{x}^{j}}$$

So we know:

$$\bar{A}^{j} = \sum_{i=1}^{n} A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}}$$

and X is a contravariant vector.

However, what happens if we differentiate a vector field? Is that also a tensor?

We know that a vector field:

$$X = \sum_{i=1}^{n} A^{i}(x) \frac{\partial}{\partial x^{i}}$$

is a contravariant vector, so if we change coordinates we get:

$$\bar{A}^{j}(\bar{x}) = \sum_{i=1}^{n} A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}} = A^{i} \frac{\partial \bar{x}^{j}}{\partial x^{i}}$$

Now let's differentiate this equation with respect to \bar{x}^k .

$$\frac{\partial \bar{A}^{j}}{\partial \bar{x}^{k}} = A^{i} \frac{\partial}{\partial \bar{x}^{k}} \left(\frac{\partial \bar{x}^{j}}{\partial x^{i}} \right) + \frac{\partial \bar{x}^{j}}{\partial x^{i}} \frac{\partial A^{i}}{\partial \bar{x}^{k}}$$

Applying the Chain Rule to $\frac{\partial}{\partial \bar{x}^k} \left(\frac{\partial \bar{x}^j}{\partial x^i} \right)$ and $\frac{\partial A^i}{\partial \bar{x}^k}$ we get:

$$\frac{\partial \bar{A}^{j}}{\partial \bar{x}^{k}} = A^{i} \frac{\partial^{2} \bar{x}^{j}}{\partial x^{l} \partial x^{i}} \frac{\partial x^{l}}{\partial \bar{x}^{k}} + \frac{\partial \bar{x}^{j}}{\partial x^{i}} \frac{\partial A^{i}}{\partial x^{l}} \frac{\partial x^{l}}{\partial \bar{x}^{k}}$$

$$\frac{\partial \bar{A}^{j}}{\partial \bar{x}^{k}} = A^{i} \frac{\partial^{2} \bar{x}^{j}}{\partial x^{l} \partial x^{i}} \frac{\partial x^{l}}{\partial \bar{x}^{k}} + \frac{\partial \bar{x}^{j}}{\partial x^{i}} \frac{\partial x^{l}}{\partial \bar{x}^{k}} \frac{\partial A^{i}}{\partial x^{l}}.$$

The first term on the right hand side shows us that $\left\{\frac{\partial \bar{A}^{j}}{\partial \bar{x}^{k}}\right\}$ is not a tensor unless $\frac{\partial^{2} \bar{x}^{j}}{\partial x^{l} \partial x^{i}} = 0$ for all j, l, i = 1, ..., n.

We would like to have a notion of a derivative of a tensor that is also a tensor. This leads us to the idea of connections and covariant derivatives.

Def. Let M be a smooth manifold and let $\chi(M)$ be the space of smooth vector fields on M. A **connection on the tangent bundle**, TM, is a map: $\nabla: \chi(M) \times \chi(M) \rightarrow \chi(M)$

written $\nabla_X Y$, instead of $\nabla(X, Y)$, that satisfies the following:

1) For all $Y \in \chi(M)$, $\nabla(_, Y)$ is linear over $C^{\infty}(M)$, i.e. for all $f, g \in C^{\infty}(M)$:

$$\nabla_{(fX_1+gX_2)}Y = f(\nabla_{X_1}Y) + g(\nabla_{X_2}Y)$$

2) For all vector fields $X \in \chi(M)$, $\nabla(X, _)$ is linear over \mathbb{R} , i.e. for all $a, b \in \mathbb{R}$:

$$\nabla_X(aY_1 + bY_2) = a(\nabla_X Y_1) + b(\nabla_X Y_2)$$

3) For all vector fields $X \in \chi(M)$, $\nabla(X, _)$ satisfies the Product Rule:

$$\nabla_X(fY) = (Xf)Y + f(\nabla_X Y)$$

for all $f \in C^{\infty}(M)$.

The vector field $\nabla_X Y$ is called the **covariant derivative** of *Y* in the direction of *X*.

Earlier we defined the directional derivative of a real valued function, f, in the direction of a vector. The covariant derivative of a vector field, Y, in the direction of X at a point $p \in M$, $\nabla_X Y|_p$, is really the directional derivative of Y at point p in the direction X_p .

Thus, a covariant derivative of a vector field is a generalization of the directional derivative of a real valued function. We will say $\nabla_X f = X(f)$, i.e. the covariant derivative of a function $f: M \to \mathbb{R}$ in the direction of $X \in \chi(M)$ is the directional derivative of f in the direction of X.

Over a coordinate patch $U \subseteq M$, ∇ is completely determined once we know the values for $X = \partial_i = \frac{\partial}{\partial x^i}$ and $Y = \partial_j = \frac{\partial}{\partial x^j}$. Since $\nabla_{\partial_i}(\partial_j)$ is a vector field on M, we can write:

$$\nabla_{\partial_i}(\partial_j) = \Gamma_{ij}^k \partial_k = \sum_{k=1}^n \Gamma_{ij}^k \partial_k$$

The components of this vector field, Γ_{ij}^k , are smooth real valued functions on M. $\nabla_{\partial_i}(\partial_j)$ is the projection of $\frac{\partial}{\partial x^i}(\frac{\partial \vec{\Phi}}{\partial x^j})$ on to the tangent space spanned by $\left\{\frac{\partial \vec{\Phi}}{\partial x^1}, \dots, \frac{\partial \vec{\Phi}}{\partial x^n}\right\}$.

Def. The functions Γ_{ij}^k are called the **Christoffel symbols** (or the Christoffel symbols of the second kind) of the connection ∇ .

By using the properties of a connection ∇ in its definition we can now find a formula for $\nabla_X Y$ on a coordinate patch, $U \subseteq M$, in terms of the components of X, Y and the Christoffel symbols Γ_{ij}^k .

Ex. Let
$$x^1, ..., x^n$$
 be local coordinates on $U \subseteq M$ and:

$$X = \sum_{i=1}^n X^i \partial_i \qquad Y = \sum_{j=1}^n Y^j \partial_j$$

Find $\nabla_X Y$.

$$\begin{aligned} \nabla_X Y &= \nabla_{X^i \partial_i} (Y^j \partial_j) \\ &= \left[X^i \partial_i (Y^j) \right] \partial_j + Y^j \nabla_{X^i \partial_i} (\partial_j) & \text{by Property #3} \\ &= \left[X^i \partial_i (Y^j) \right] \partial_j + Y^j X^i \nabla_{\partial_i} (\partial_j) & \text{by Property #1} \\ &= \left[X^i \partial_i (Y^j) \right] \partial_j + Y^j X^i (\Gamma_{ij}^k \partial_k) \end{aligned}$$

Now switch the roll of j and k in the second term:

$$= [X^{i}\partial_{i}(Y^{j})]\partial_{j} + Y^{k}X^{i}(\Gamma^{j}_{ik}\partial_{j})$$
$$\nabla_{X}Y = (X^{i}\partial_{i}(Y^{j}) + Y^{k}X^{i}(\Gamma^{j}_{ik}))\partial_{j}.$$

In particular if $X = \partial_t = \frac{\partial}{\partial x^t}$, then we have:

$$\nabla_{\partial_t} Y = \left(\frac{\partial}{\partial x^t} \left(Y^j\right) + \Gamma_{tk}^j Y^k\right) \partial_j.$$

Def. We call the (1, 1) tensor with components: $\nabla Y = \left(\frac{\partial}{\partial x^t} \left(Y^j\right) + \Gamma_{tk}^j Y^k\right)$ the **covariant derivative** of the (1, 0) tensor Y.

So if we have a local coordinate system $U \subseteq M$, $(x^1, ..., x^n)$, when taking the covariant derivative of a vector field Y, we differentiate each component Y^j with respect to x^t but then add a second term, $\Gamma_{tk}^j Y^k$, where:

$$\Gamma_{tk}^{j}\partial_{j}=\nabla_{\partial_{t}}(\partial_{k}).$$

Where did this second term come from? In other words, why isn't the derivative of Y equal to $\left(\frac{\partial Y^j}{\partial x^t}\right)$ as it was in second year calculus?

The "problem" we have with a vector field on a general smooth manifold is that the basis of the tangent space is also a function of $(x^1, ..., x^n)$ (the basis of $T_p(\mathbb{R}^n)$ is $\vec{e}_1, ..., \vec{e}_n$ for every point p). The covariant derivative of a vector field is measuring the rate of change of the components of the vector field, $\left(\frac{\partial Y^j}{\partial x^t}\right)$, as well as the rate of change of the basis of the tangent space, $\Gamma_{tk}^j Y^k$.

Ex. Suppose the surface $S \subseteq \mathbb{R}^3$ is given by: $\overrightarrow{\Phi}(x^1, x^2) = (x^1, x^2, (x^1)^2 + (x^2)^2).$

Then a basis for the tangent space at $\overrightarrow{\Phi}(x^1, x^2)$ is given by:

$$\vec{\Phi}_{x^1} = (1, 0, 2x^1) \qquad \vec{\Phi}_{x^2} = (0, 1, 2x^2).$$

So the basis changes as $\overrightarrow{\Phi}(x^1, x^2)$ changes.

In general, if we have a vector field $Y = Y^i \partial_i$, where $\partial_i = \frac{\partial \Phi}{\partial x^i}$, then

$$\frac{\partial Y}{\partial x^k} = \frac{\partial}{\partial x^k} \left(Y^i \partial_i \right) = \frac{\partial Y^i}{\partial x^k} \partial_i + Y^i \frac{\partial}{\partial x^k} (\partial_i)$$
$$= \frac{\partial Y^i}{\partial x^k} \partial_i + Y^i \Gamma^j_{ik} \partial_j.$$

Now reindex the second term by interchanging i and j.

$$\frac{\partial Y}{\partial x^k} = \frac{\partial Y^i}{\partial x^k} \partial_i + Y^j \Gamma^i_{jk} \partial_i$$
$$\frac{\partial Y}{\partial x^k} = \left(\frac{\partial Y^i}{\partial x^k} + Y^j \Gamma^i_{jk}\right) \partial_i .$$

Ex. If we take a vector field on \mathbb{R}^n where:

 $\vec{f}(x^1, \dots, x^n) = \langle f^1(x^1, \dots, x^n), \dots, f^n(x^1, \dots, x^n) \rangle$ and $\partial_i = \vec{e}_i = \langle 0, \dots, 1, \dots, 0 \rangle$, the standard basis on \mathbb{R}^n , then:

$$\vec{f}(x^1, ..., x^n) = f^j \partial_j \text{ and } \nabla_{\partial_i} \vec{f} = \frac{\partial f^j}{\partial x^i} \partial_j.$$

In this case, $\nabla_{\partial_i} \vec{f}$, is just the usual partial derivative of a vector field on \mathbb{R}^n (i.e. the derivative of a vector field that one learns in second year calculus). Here, all of the Christoffel symbols are equal to 0.

Notice: In the example above, the covariant derivative $\nabla \vec{f}$ is just the Jacobian of \vec{f} . That is, the components of $\nabla \vec{f}$ are $\left(\frac{\partial f^i}{\partial x^j}\right)$.

So far we have a definition for the covariant derivative of a (1, 0) tensor, with components Y^i , whose components we can write as:

$$Y_{;k}^{i} = \frac{\partial Y^{i}}{\partial x^{k}} + \Gamma_{kj}^{i} Y^{j}.$$

In general, if F is an (r, s) tensor over a manifold, M, and has components $F_{j_1...j_s}^{i_1...i_r}$ over a coordinate chart U, then the components of the covariant derivative of F, ∇F , are:

$$F_{j_{1}\dots j_{S};k}^{i_{1}\dots i_{r}} = \frac{\partial F_{j_{1}\dots j_{S}}^{i_{1}\dots i_{r}}}{\partial x^{k}} + \sum_{\alpha=1}^{r} \Gamma_{kp}^{i_{\alpha}} F_{j_{1}\dots j_{S}}^{i_{1}\dots i_{\alpha-1}pi_{\alpha+1}\dots i_{r}} - \sum_{\beta=1}^{s} \Gamma_{kj_{\beta}}^{p} F_{j_{1}\dots j_{\beta-1}pj_{\beta+1}\dots j_{S}}^{i_{1}\dots i_{r}}$$

 ∇F is an (r, s + 1) tensor.

Ex. If F is a (2, 1) tensor with components F_k^{ij} , then ∇F is a (2, 2) tensor with components:

$$F_{k;l}^{ij} = \frac{\partial F_k^{ij}}{\partial x^l} + \Gamma_{lp}^i F_k^{pj} + \Gamma_{lp}^j F_k^{ip} - \Gamma_{lk}^p F_p^{ij}.$$

We now state a few results whose proofs can be found in the appendix to Connections and Covariant Differentiation.

 Γ_{ij}^k is not a tensor, but how do the components change under a change of coordinates?

Proposition:

Let U and \overline{U} be overlapping coordinate patches on a manifold, M, with local coordinates $(x^1, ..., x^n)$ and $(\overline{x}^1, ..., \overline{x}^n)$ respectively, then $\overline{\Gamma}_{ij}^k = \frac{\partial x^r}{\partial \overline{x}^j} \frac{\partial x^l}{\partial \overline{x}^i} \frac{\partial \overline{x}^k}{\partial x^m} \Gamma_{lr}^m + \frac{\partial^2 x^m}{\partial \overline{x}^i \partial \overline{x}^j} \frac{\partial \overline{x}^k}{\partial x^m}$

Proof (see appendix).

Proposition: $T_{i;k} = \frac{\partial T_i}{\partial x^k} - \Gamma_{ik}^j T_j$ are the components of a (0, 2) tensor.

Proof (see appendix).

Levi-Civita Theorem:

Let (M, g) be a Riemannian manifold. There exists a unique connection ∇ that satisfies the following:

1)
$$\nabla g = 0$$

2) For all $X, Y \in \chi(M)$, $[X, Y] = \nabla_X Y - \nabla_Y X$.

Proof (see appendix).

Proposition: Let (M, g) be a smooth manifold. Then, over a coordinate patch $U \subseteq M$ with local coordinates $(x^1, ..., x^n)$ the Christoffel symbols of the Levi-Civita connection are given by

$$\Gamma_{jk}^{i} = \sum_{l=1}^{n} \frac{1}{2} g^{il} \left(\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right)$$

where g^{ij} are the entries to the inverse matrix (g_{kl}) .

Proof (see appendix).

Ex. Using the formula for Γ^i_{jk} in terms of the metric g, show: $\Gamma^i_{jk} = \Gamma^i_{kj}$.

$$\Gamma_{jk}^{i} = \sum_{l=1}^{n} \frac{1}{2} g^{il} \left(\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right)$$

$$\Gamma_{kj}^{i} = \sum_{l=1}^{n} \frac{1}{2} g^{il} \left(\frac{\partial g_{jl}}{\partial x^{k}} + \frac{\partial g_{lk}}{\partial x^{j}} - \frac{\partial g_{kj}}{\partial x^{l}} \right)$$

These two expressions are equal because $g_{lphaeta}=g_{etalpha}.$

Ex. Using the formula for Γ^i_{jk} in terms of the metric g, show that: $abla_k g_{ij} = g_{ij;k} = 0.$

$$g_{ij;k} = \frac{\partial g_{ij}}{\partial x^k} - \Gamma^p_{ik} g_{pj} - \Gamma^p_{jk} g_{ip}$$

$$= \frac{\partial g_{ij}}{\partial x^{k}} - \frac{1}{2} \sum_{l=1}^{n} g_{pj} g^{pl} \left(\frac{\partial g_{kl}}{\partial x^{i}} + \frac{\partial g_{li}}{\partial x^{k}} - \frac{\partial g_{ik}}{\partial x^{l}} \right) - \frac{1}{2} \sum_{l=1}^{n} g_{ip} g^{pl} \left(\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right)$$

$$=\frac{\partial g_{ij}}{\partial x^{k}}-\frac{1}{2}\sum_{l=1}^{n}\delta_{j}^{l}\left(\frac{\partial g_{kl}}{\partial x^{i}}+\frac{\partial g_{li}}{\partial x^{k}}-\frac{\partial g_{ik}}{\partial x^{l}}\right)-\frac{1}{2}\sum_{l=1}^{n}\delta_{i}^{l}\left(\frac{\partial g_{kl}}{\partial x^{j}}+\frac{\partial g_{lj}}{\partial x^{k}}-\frac{\partial g_{jk}}{\partial x^{l}}\right)$$

$$=\frac{\partial g_{ij}}{\partial x^{k}}-\frac{1}{2}\left(\frac{\partial g_{kj}}{\partial x^{i}}+\frac{\partial g_{ji}}{\partial x^{k}}-\frac{\partial g_{ik}}{\partial x^{j}}\right)-\frac{1}{2}\left(\frac{\partial g_{ki}}{\partial x^{j}}+\frac{\partial g_{ij}}{\partial x^{k}}-\frac{\partial g_{jk}}{\partial x^{i}}\right).$$

Since $g_{lphaeta}=g_{etalpha}$, we have:

$$g_{ij;k} = \frac{\partial g_{ij}}{\partial x^k} - \frac{\partial g_{ij}}{\partial x^k} = 0.$$

Ex. Let g be the metric on \mathbb{R}^2 induced by $\overrightarrow{\Phi}(x^1, x^2) = (x^1 cos x^2, x^1 sin x^2)$. Find the eight Christoffel symbols directly from the metric g. Given the vector field $V = x^2 \overrightarrow{\Phi}_{x^1} - x^1 \overrightarrow{\Phi}_{x^2} = \langle x^2, -x^1 \rangle$, find the components of ∇V .

$$\begin{split} \overrightarrow{\Phi}_{x^1} = &< \cos x^2, \sin x^2 >, \quad \overrightarrow{\Phi}_{x^2} = &< -x^1 \sin x^2, \ x^1 \cos x^2 > \\ g_{11} = \overrightarrow{\Phi}_{x^1} \cdot \overrightarrow{\Phi}_{x^1} = 1 ; \qquad g_{12} = g_{21} = \overrightarrow{\Phi}_{x^1} \cdot \overrightarrow{\Phi}_{x^2} = 0 ; \\ g_{22} = \overrightarrow{\Phi}_{x^2} \cdot \overrightarrow{\Phi}_{x^2} = (x^1)^2 \end{split}$$

So we have:
$$(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & (x^1)^2 \end{pmatrix}$$
 and $(g^{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{(x^1)^2} \end{pmatrix}$.

$$\Gamma_{jk}^{i} = \sum_{l=1}^{n} \frac{1}{2} g^{il} \left(\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right)$$

But the only non-zero derivative of g_{ij} is $\frac{\partial g_{22}}{\partial x^1} = 2x^1$.

The only Γ_{jk}^i that include $\frac{\partial g_{22}}{\partial x^1}$ are $\Gamma_{21}^1 = \Gamma_{12}^1$, Γ_{22}^1 , $\Gamma_{21}^2 = \Gamma_{12}^2$ and Γ_{22}^2 .

$$\Gamma_{21}^{1} = \Gamma_{12}^{1} = \sum_{l=1}^{2} \frac{1}{2} g^{1l} \left(\frac{\partial g_{2l}}{\partial x^{1}} + \frac{\partial g_{l1}}{\partial x^{2}} - \frac{\partial g_{12}}{\partial x^{l}} \right) = 0; \text{ since } g^{12} = 0$$

$$\Gamma_{22}^{1} = \sum_{l=1}^{2} \frac{1}{2} g^{1l} \left(\frac{\partial g_{2l}}{\partial x^{2}} + \frac{\partial g_{l2}}{\partial x^{2}} - \frac{\partial g_{22}}{\partial x^{l}} \right) = \frac{1}{2} (g^{11}) \left(-\frac{\partial g_{22}}{\partial x^{1}} \right) = -x^{1}$$

$$\begin{split} \Gamma_{21}^2 &= \Gamma_{12}^2 = \sum_{l=1}^2 \frac{1}{2} g^{2l} \left(\frac{\partial g_{2l}}{\partial x^1} + \frac{\partial g_{l1}}{\partial x^2} - \frac{\partial g_{12}}{\partial x^l} \right) = \frac{1}{2} (g^{22}) (\frac{\partial g_{22}}{\partial x^1}) = \frac{1}{x^1} \\ \Gamma_{22}^2 &= \sum_{l=1}^2 \frac{1}{2} g^{2l} \left(\frac{\partial g_{2l}}{\partial x^2} + \frac{\partial g_{l2}}{\partial x^2} - \frac{\partial g_{22}}{\partial x^l} \right) = 0; \qquad \text{since } g^{21} = 0. \\ \text{All other } \Gamma_{jk}^i &= 0. \end{split}$$

$$\nabla_k V^i = \frac{\partial V^i}{\partial x^k} + \Gamma^i_{jk} V^j$$
; where $V = \langle x^2, -x^1 \rangle = \langle V^1, V^2 \rangle$.

If we call $T = \nabla V$ then we have:

$$\begin{split} T_1^1 &= \nabla_1 V^1 = \frac{\partial V^1}{\partial x^1} + \Gamma_{j1}^1 V^j = 0 \\ T_2^1 &= \nabla_2 V^1 = \frac{\partial V^1}{\partial x^2} + \Gamma_{j2}^1 V^j = 1 + \Gamma_{22}^1 V^2 = 1 + (x^1)^2 \\ T_1^2 &= \nabla_1 V^2 = \frac{\partial V^2}{\partial x^1} + \Gamma_{j1}^2 V^j = -1 + \Gamma_{21}^2 V^2 = -1 + \left(\frac{1}{x^1}\right) (-x^1) = -2. \\ T_2^2 &= \nabla_2 V^2 = \frac{\partial V^2}{\partial x^2} + \Gamma_{j2}^2 V^j = \Gamma_{12}^2 V^1 = \left(\frac{1}{x^1}\right) (x^2) \,. \end{split}$$

Using the fact that the covariant derivative of a contravariant vector is just the projection of the usual derivative onto the tangent space we have another way to calculate the Christoffel symbols.

Ex. Let $S^2 \subseteq \mathbb{R}^3$ be the unit sphere where:

$$\vec{\Phi}(x^1, x^2) = (\cos x^1 \sin x^2, \sin x^1 \sin x^2, \cos x^2)$$
$$0 \le x^1 \le 2\pi, \ 0 \le x^2 \le \pi.$$

We know that $\nabla_{\partial_i}(\partial_j) = \sum_{k=1}^n \Gamma_{ij}^k \partial_k$.

Use the fact that the coefficient of the projection of $\overrightarrow{\Phi}_{x^{i}x^{j}}$ on to $\overrightarrow{\Phi}_{x^{k}} = \partial_{k}$ is Γ_{ij}^{k} to show that the Christoffel symbols are $\Gamma_{21}^{1} = \Gamma_{12}^{1} = cotx^{2}$, $\Gamma_{11}^{2} = -(sinx^{2})(cosx^{2})$, $\Gamma_{ij}^{k} = 0$ otherwise. (For HW you need to do this calculation with the formula for Γ_{ij}^{k} in terms of the metric).

$$\begin{array}{l} \partial_{1} = \overrightarrow{\Phi}_{x^{1}} = < -(\sin x^{1})\sin x^{2}, (\cos x^{1})\sin x^{2}, 0 >; \\ \partial_{2} = \overrightarrow{\Phi}_{x^{2}} = < (\cos x^{1})\cos x^{2}, (\sin x^{1})\cos x^{2}, -\sin x^{2} > \\ \overrightarrow{\Phi}_{x^{1}} \cdot \overrightarrow{\Phi}_{x^{1}} = \sin^{2} x^{2} \\ \overrightarrow{\Phi}_{x^{2}} \cdot \overrightarrow{\Phi}_{x^{2}} = 1 \\ \end{array}$$

$$\begin{array}{l} \overrightarrow{\Phi}_{x^{1}x^{1}} = < -(\cos x^{1})\sin x^{2}, -(\sin x^{1})\sin x^{2}, 0 > \\ \overrightarrow{\Phi}_{x^{1}x^{2}} = < -(\sin x^{1})\cos x^{2}, (\cos x^{1})\cos x^{2}, 0 > \\ \overrightarrow{\Phi}_{x^{2}x^{2}} = < -(\cos x^{1})\sin x^{2}, -(\sin x^{1})\sin x^{2}, -\cos x^{2} > \end{array}$$

Recall from 2nd year calculus that the projection of a vector \vec{w} onto a vector \vec{v} is given by: $Proj_{\vec{v}}\vec{w} = (\frac{\vec{v}\cdot\vec{w}}{\vec{v}\cdot\vec{v}})\vec{v}$.

$$\nabla_{\partial_1}(\partial_1) = \sum_{k=1}^n \Gamma_{11}^k \partial_k = \Gamma_{11}^1 \partial_1 + \Gamma_{11}^2 \partial_2$$

$$\Gamma_{11}^1 = \frac{\overrightarrow{\Phi}_{x^1 x^1} \cdot \overrightarrow{\Phi}_{x^1}}{\overrightarrow{\Phi}_{x^1} \cdot \overrightarrow{\Phi}_{x^1}}$$

$$= \frac{\langle -(\cos x^1) \sin x^2, -(\sin x^1) \sin x^2, 0 \rangle \cdot \langle -(\sin x^1) \sin x^2, (\cos x^1) \sin x^2, 0 \rangle}{\sin^2 x^2}$$

$$= 0$$

$$\Gamma_{11}^{2} = \frac{\overrightarrow{\Phi}_{x^{1}x^{1}} \cdot \overrightarrow{\Phi}_{x^{2}}}{\overrightarrow{\Phi}_{x^{2}} \cdot \overrightarrow{\Phi}_{x^{2}}}$$
$$= \frac{\langle -(\cos x^{1}) \sin x^{2}, -(\sin x^{1}) \sin x^{2}, 0 \rangle \cdot \langle (\cos x^{1}) \cos x^{2}, (\sin x^{1}) \cos x^{2}, -\sin x^{2} \rangle}{1}$$
$$= -(\sin x^{2}) \cos x^{2}$$

$$\nabla_{\partial_{2}}(\partial_{1}) = \sum_{k=1}^{n} \Gamma_{21}^{k} \partial_{k} = \Gamma_{21}^{1} \partial_{1} + \Gamma_{21}^{2} \partial_{2}$$

$$\Gamma_{21}^{1} = \Gamma_{12}^{1} = \frac{\vec{\Phi}_{x^{1}x^{2}} \cdot \vec{\Phi}_{x^{1}}}{\vec{\Phi}_{x^{1}} \cdot \vec{\Phi}_{x^{1}}}$$

$$= \frac{\langle -(\sin x^{1}) \cos x^{2}, (\cos x^{1}) \cos x^{2}, 0 \rangle \cdot \langle -(\sin x^{1}) \sin x^{2}, (\cos x^{1}) \sin x^{2}, 0 \rangle}{\sin^{2} x^{2}}$$

$$= \frac{(\cos x^{2}) \sin x^{2}}{\sin^{2} x^{2}} = \cot x^{2}$$

$$\begin{split} \Gamma_{21}^2 &= \Gamma_{12}^2 = \frac{\overrightarrow{\Phi}_{x^1 x^2} \cdot \overrightarrow{\Phi}_{x^2}}{\overrightarrow{\Phi}_{x^2} \cdot \overrightarrow{\Phi}_{x^2}} \\ &= \frac{\langle -(sinx^1)cosx^2, (cosx^1)cosx^2, 0 \rangle \cdot \langle (cosx^1)cosx^2, (sinx^1)cosx^2, -sinx^2 \rangle}{1} \\ &= 0 \end{split}$$

$$\begin{aligned} \nabla_{\partial_2}(\partial_2) &= \sum_{k=1}^n \Gamma_{22}^k \partial_k = \Gamma_{22}^1 \partial_1 + \Gamma_{22}^2 \partial_2 \\ \Gamma_{22}^1 &= \frac{\overrightarrow{\Phi}_{x^2 x^2} \cdot \overrightarrow{\Phi}_{x^1}}{\overrightarrow{\Phi}_{x^1} \cdot \overrightarrow{\Phi}_{x^1}} \\ &= \frac{\langle -(\cos x^1) \sin x^2, -(\sin x^1) \sin x^2, -\cos x^2 \rangle \cdot \langle -(\sin x^1) \sin x^2, (\cos x^1) \sin x^2, 0 \rangle}{\sin^2 x^2} \\ &= 0. \end{aligned}$$

$$\begin{split} \Gamma_{22}^2 &= \frac{\overrightarrow{\Phi}_{x^2 x^2} \cdot \overrightarrow{\Phi}_{x^2}}{\overrightarrow{\Phi}_{x^2} \cdot \overrightarrow{\Phi}_{x^2}} \\ &= \frac{\langle -(\cos x^1) \sin x^2, -(\sin x^1) \sin x^2, -\cos x^2 \rangle \cdot \langle (\cos x^1) \cos x^2, (\sin x^1) \cos x^2, -\sin x^2 \rangle}{1} \\ &= 0. \end{split}$$