Appendix to Connections and Covariant Differentiation

 Γ_{ij}^k is not a tensor, but how do the components change under a change of coordinates?

Proposition:

Let U and \overline{U} be overlapping coordinate patches on a manifold, M, with local coordinates $(x^1, ..., x^n)$ and $(\overline{x}^1, ..., \overline{x}^n)$ respectively, then

$$\bar{\Gamma}_{ij}^{k} = \frac{\partial x^{r}}{\partial \bar{x}^{j}} \frac{\partial x^{l}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{m}} \Gamma_{lr}^{m} + \frac{\partial^{2} x^{m}}{\partial \bar{x}^{i} \partial \bar{x}^{j}} \frac{\partial \bar{x}^{k}}{\partial x^{m}}$$

 $\text{Proof:}\qquad \nabla_{\underline{\partial}\over\partial\overline{x}^{i}}\left(\underline{\partial}{\partial\overline{x}^{j}}\right)=\overline{\Gamma}_{ij}^{k}\ \overline{\partial}_{k}.$

By the Chain Rule:

$$\frac{\partial}{\partial \bar{x}^{i}} = \sum_{l=1}^{n} \frac{\partial x^{l}}{\partial \bar{x}^{i}} \frac{\partial}{\partial x^{l}}; \qquad \frac{\partial}{\partial \bar{x}^{j}} = \sum_{m=1}^{n} \frac{\partial x^{m}}{\partial \bar{x}^{j}} \frac{\partial}{\partial x^{m}}$$

so
$$\nabla_{\frac{\partial}{\partial \bar{x}^{i}}} \left(\frac{\partial}{\partial \bar{x}^{j}} \right) = \nabla_{\frac{\partial x^{l}}{\partial \bar{x}^{i} \partial x^{l}}} \left(\frac{\partial x^{m}}{\partial \bar{x}^{j}} \frac{\partial}{\partial x^{m}} \right).$$

By Property #3 in the definition of a connection we get:

$$\overline{\Gamma}_{ij}^{k}\frac{\partial}{\partial \overline{x}^{k}} = \frac{\partial x^{l}}{\partial \overline{x}^{i}}\frac{\partial}{\partial x^{l}}\left(\frac{\partial x^{m}}{\partial \overline{x}^{j}}\right)\frac{\partial}{\partial x^{m}} + \frac{\partial x^{m}}{\partial \overline{x}^{j}}\nabla_{\frac{\partial x^{l}}{\partial \overline{x}^{i}}\frac{\partial}{\partial x^{l}}}\left(\frac{\partial}{\partial x^{m}}\right).$$

By Property #1 we get:

$$= \frac{\partial x^{l}}{\partial \bar{x}^{i}} \frac{\partial^{2} x^{m}}{\partial x^{l} \partial \bar{x}^{j}} \frac{\partial}{\partial x^{m}} + \frac{\partial x^{m}}{\partial \bar{x}^{j}} \frac{\partial x^{l}}{\partial \bar{x}^{i}} \nabla_{\frac{\partial}{\partial x^{l}}} \left(\frac{\partial}{\partial x^{m}}\right)$$

$$= \frac{\partial x^l}{\partial \bar{x}^i} \frac{\partial^2 x^m}{\partial x^l \partial \bar{x}^j} \frac{\partial}{\partial x^m} + \frac{\partial x^m}{\partial \bar{x}^j} \frac{\partial x^l}{\partial \bar{x}^i} \Gamma^t_{lm} \frac{\partial}{\partial x^t}.$$

Reindex the second term by replacing m with r and t with m:

$$= \frac{\partial x^{l}}{\partial \bar{x}^{i}} \frac{\partial^{2} x^{m}}{\partial x^{l} \partial \bar{x}^{j}} \frac{\partial}{\partial x^{m}} + \frac{\partial x^{r}}{\partial \bar{x}^{j}} \frac{\partial x^{l}}{\partial \bar{x}^{i}} \Gamma_{lr}^{m} \frac{\partial}{\partial x^{m}}$$

Thus
$$\overline{\Gamma}_{ij}^k \frac{\partial}{\partial \bar{x}^k} = \left(\frac{\partial x^l}{\partial \bar{x}^i} \frac{\partial^2 x^m}{\partial x^l \partial \bar{x}^j} + \frac{\partial x^r}{\partial \bar{x}^j} \frac{\partial x^l}{\partial \bar{x}^i} \Gamma_{lr}^m \right) \frac{\partial}{\partial x^m}.$$

Now apply both sides to \bar{x}^k :

$$\overline{\Gamma}_{ij}^k \frac{\partial \overline{x}^k}{\partial \overline{x}^k} = \frac{\partial x^l}{\partial \overline{x}^i} \frac{\partial^2 x^m}{\partial x^l \partial \overline{x}^j} \frac{\partial \overline{x}^k}{\partial x^m} + \frac{\partial x^r}{\partial \overline{x}^j} \frac{\partial x^l}{\partial \overline{x}^i} \frac{\partial \overline{x}^k}{\partial x^m} \Gamma_{lr}^m .$$

Notice by the Chain Rule:

$$\frac{\partial^2 x^m}{\partial \bar{x}^i \partial \bar{x}^j} = \frac{\partial}{\partial \bar{x}^i} \left(\frac{\partial x^m}{\partial \bar{x}^j} \right) = \frac{\partial^2 x^m}{\partial x^l \partial \bar{x}^j} \frac{\partial x^l}{\partial \bar{x}^i} \Longrightarrow$$
$$\overline{\Gamma}_{ij}^k = \frac{\partial x^r}{\partial \bar{x}^j} \frac{\partial x^l}{\partial \bar{x}^i} \frac{\partial \bar{x}^k}{\partial x^m} \Gamma_{lr}^m + \frac{\partial^2 x^m}{\partial \bar{x}^i \partial \bar{x}^j} \frac{\partial \bar{x}^k}{\partial x^m}.$$

Now let's use this relationship to show:

Proposition:
$$\frac{\partial^2 x^m}{\partial \bar{x}^i \partial \bar{x}^j} = \bar{\Gamma}^s_{ij} \frac{\partial x^m}{\partial \bar{x}^s} - \frac{\partial x^r}{\partial \bar{x}^j} \frac{\partial x^l}{\partial \bar{x}^i} \Gamma^m_{lr}$$
.

Proof: By the Chain Rule:

$$\delta_{s}^{k} = \frac{\partial \bar{x}^{k}}{\partial \bar{x}^{s}} = \frac{\partial \bar{x}^{k}}{\partial x^{m}} \frac{\partial x^{m}}{\partial \bar{x}^{s}}.$$

Now take our previous result:

$$\bar{\Gamma}_{ij}^{k} = \frac{\partial x^{r}}{\partial \bar{x}^{j}} \frac{\partial x^{l}}{\partial \bar{x}^{i}} \frac{\partial \bar{x}^{k}}{\partial x^{m}} \Gamma_{lr}^{m} + \frac{\partial^{2} x^{m}}{\partial \bar{x}^{i} \partial \bar{x}^{j}} \frac{\partial \bar{x}^{k}}{\partial x^{m}}$$

$$\overline{\Gamma}_{ij}^{k} - \frac{\partial x^{r}}{\partial \overline{x}^{j}} \frac{\partial x^{l}}{\partial \overline{x}^{i}} \frac{\partial \overline{x}^{k}}{\partial x^{m}} \Gamma_{lr}^{m} = \frac{\partial^{2} x^{m}}{\partial \overline{x}^{i} \partial \overline{x}^{j}} \frac{\partial \overline{x}^{k}}{\partial x^{m}}.$$

Now multiply by $\frac{\partial x^m}{\partial \bar{x}^s}$:

$$\overline{\Gamma}_{ij}^k \frac{\partial x^m}{\partial \bar{x}^s} - \frac{\partial x^r}{\partial \bar{x}^j} \frac{\partial x^l}{\partial \bar{x}^i} \frac{\partial \bar{x}^k}{\partial x^m} \frac{\partial x^m}{\partial \bar{x}^s} \Gamma_{lr}^m = \frac{\partial^2 x^m}{\partial \bar{x}^i \partial \bar{x}^j} \frac{\partial \bar{x}^k}{\partial x^m} \frac{\partial x^m}{\partial \bar{x}^s}$$

$$\bar{\Gamma}^{k}_{ij}\frac{\partial x^{m}}{\partial \bar{x}^{s}} - \frac{\partial x^{r}}{\partial \bar{x}^{j}}\frac{\partial x^{l}}{\partial \bar{x}^{i}}\,\delta^{k}_{s}\,\Gamma^{m}_{lr} = \frac{\partial^{2}x^{m}}{\partial \bar{x}^{i}\,\partial \bar{x}^{j}}\,\delta^{k}_{s}$$

.

$$\overline{\Gamma}_{ij}^{s} \frac{\partial x^{m}}{\partial \bar{x}^{s}} - \frac{\partial x^{r}}{\partial \bar{x}^{j}} \frac{\partial x^{l}}{\partial \bar{x}^{i}} \Gamma_{lr}^{m} = \frac{\partial^{2} x^{m}}{\partial \bar{x}^{i} \partial \bar{x}^{j}}.$$

Now we can show that:

Proposition:
$$T_{i;k} = \frac{\partial T_i}{\partial x^k} - \Gamma_{ik}^j T_j$$
 are the components of a (0, 2) tensor.

Proof: T_i are components of a (0,1) tensor, so:

$$\bar{T}_i = T_j \frac{\partial x^j}{\partial \bar{x}^i}.$$

Differentiating both sides we get:

$$\frac{\partial \bar{T}_i}{\partial \bar{x}^k} = \frac{\partial T_j}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^i} + T_j \frac{\partial^2 x^j}{\partial \bar{x}^i \partial \bar{x}^k}.$$

Now by the Chain Rule:

$$= \frac{\partial T_j}{\partial x^r} \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^i} + T_j \left(\frac{\partial^2 x^j}{\partial \bar{x}^i \partial \bar{x}^k} \right).$$

Using
$$\frac{\partial^2 x^j}{\partial \bar{x}^i \partial \bar{x}^k} = \overline{\Gamma}_{ik}^s \frac{\partial x^j}{\partial \bar{x}^s} - \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^l}{\partial \bar{x}^i} \Gamma_{lr}^j$$
 we get:

$$\frac{\partial \bar{T}_i}{\partial \bar{x}^k} = \frac{\partial T_j}{\partial x^r} \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^i} + T_j \left(\bar{\Gamma}_{ik}^s \frac{\partial x^j}{\partial \bar{x}^s} - \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^l}{\partial \bar{x}^i} \Gamma_{lr}^j \right)$$

$$= \frac{\partial T_j}{\partial x^r} \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^i} + \bar{\Gamma}^s_{ik} T_j \frac{\partial x^j}{\partial \bar{x}^s} - \Gamma^j_{lr} T_j \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^l}{\partial \bar{x}^i}$$

$$\frac{\partial \bar{T}_i}{\partial \bar{x}^k} = \frac{\partial T_j}{\partial x^r} \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^i} + \bar{\Gamma}^s_{ik} \bar{T}_s - \Gamma^j_{lr} T_j \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^l}{\partial \bar{x}^i}.$$

Now if we subtract $\overline{\Gamma}_{ik}^s \overline{T}_s$ from both sides and reindex the last term by switching l and j, we get:

$$\frac{\partial \bar{T}_i}{\partial \bar{x}^k} - \bar{\Gamma}_{ik}^s \bar{T}_s = \left(\frac{\partial T_j}{\partial x^r} - \Gamma_{jr}^l T_l\right) \frac{\partial x^r}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^i}.$$

So $\nabla_k T_i = T_{i;k} = \frac{\partial T_i}{\partial x^k} - \Gamma_{ik}^j T_j$ are the components of a (0, 2) tensor.

In Riemannian geometry there is a very special connection called the Levi-Civita connection.

Levi-Civita Theorem:

Let (M, g) be a Riemannian manifold. There exists a unique connection ∇ that satisfies the following:

1)
$$\nabla g = 0$$

2) For all $X, Y \in \chi(M)$, $[X, Y] = \nabla_X Y - \nabla_Y X$.

Condition #1, $\nabla g = 0$, is equivalent to saying that the following product rule holds: $\nabla_X (\langle Y, Z \rangle) = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ where $\langle X, Y \rangle = g(X, Y)$.

The second condition implies that: $\Gamma_{jk}^i = \Gamma_{kj}^i$.

Proof: Let $\nabla_Z(\langle X, Y \rangle) = Z(X, Y)$. If the connection exists, then $\nabla g = 0$ and we have through the product rule:

*
$$X(Y,Z) = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

**
$$Y(Z,X) = \langle \nabla_Y Z, X \rangle + \langle Z, \nabla_Y X \rangle$$

$$Z(X,Y) = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle$$

Now if we add * and ** while subtracting ***, we get:

$$\begin{aligned} X(Y,Z) + Y(Z,X) - Z(X,Y) \\ &= \langle \nabla_X Y - \nabla_Y X, Z \rangle + \langle \nabla_X Z - \nabla_Z X, Y \rangle \\ &+ \langle \nabla_Y Z - \nabla_Z Y, X \rangle + 2 \langle Z, \nabla_Y X \rangle. \end{aligned}$$

Using the fact that ∇ is symmetric, meaning $[X, Y] = \nabla_X Y - \nabla_Y X$, we can write:

$$X(Y,Z) + Y(Z,X) - Z(X,Y)$$

= < [X,Y], Z > + < [X,Z], Y > + < [Y,Z], X > + 2 < Z, \nabla_X Y >.

Solving for $\langle Z, \nabla_X Y \rangle$ we get:

$$< Z, \nabla_X Y >= \frac{1}{2} (X(Y,Z) + Y(Z,X) - Z(X,Y))$$

 $- < [X,Y], Z > - < [X,Z], Y > - < [Y,Z], X >).$

The equation above will allow us to calculate Γ_{jk}^i for ∇ in terms of the metric g. Thus, if ∇ exists, then it's unique. To prove that such a connection exists one starts with the last equation and shows it satisfies $\nabla g = 0$ and $[X, Y] = \nabla_X Y - \nabla_Y X$ (the two required conditions).

Proposition: Let (M, g) be a smooth manifold. Then, over a coordinate patch $U \subseteq M$ with local coordinates $(x^1, ..., x^n)$ the Christoffel symbols of the Levi-Civita connection are given by

$$\Gamma_{jk}^{i} = \sum_{l=1}^{n} \frac{1}{2} g^{il} \left(\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right)$$

where g^{ij} are the entries to the inverse matrix (g_{kl}) .

Proof: Let $X = \partial_i$, $Y = \partial_j$, $Z = \partial_k$, then by the last equation in the previous proposition we can write:

$$<\partial_{k}, \nabla_{\partial_{i}}\partial_{j} > = \frac{1}{2}(\nabla_{\partial_{i}} < \partial_{j}, \partial_{k} > + \nabla_{\partial_{j}} < \partial_{k}, \partial_{i} > \\ - \nabla_{\partial_{k}} < \partial_{i}, \partial_{j} > - < [\partial_{i}, \partial_{j}], \partial_{k} > \\ - < [\partial_{i}, \partial_{k}], \partial_{j} > - < [\partial_{j}, \partial_{k}], \partial_{i} >).$$

Notice that $\left[\partial_i, \partial_j\right] = \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j} - \frac{\partial}{\partial x^j} \frac{\partial}{\partial x^i} = 0$ since by the smoothness mixed partial derivatives are equal.

$$<\partial_{k}, \sum_{l=1}^{n} \Gamma_{ij}^{l} \partial_{l} >$$
$$= \frac{1}{2} \Big(\nabla_{\partial_{i}} < \partial_{j}, \partial_{k} > + \nabla_{\partial_{j}} < \partial_{k}, \partial_{i} > - \nabla_{\partial_{k}} < \partial_{i}, \partial_{j} > \Big)$$

< X, Y > is a smooth function on M so $\nabla_{\partial_i} < \partial_j, \partial_k >$ is the directional derivative of $< \partial_j, \partial_k >$ in the direction of ∂_i . Thus:

$$\nabla_{\partial_i} < \partial_j, \partial_k > = \frac{\partial}{\partial x^i} (g_{jk})$$

$$\sum_{l=1}^{n} \Gamma_{ij}^{l} g_{kl} = \frac{1}{2} \left(\frac{\partial}{\partial x^{i}} (g_{jk}) + \frac{\partial}{\partial x^{j}} (g_{ki}) - \frac{\partial}{\partial x^{k}} (g_{ij}) \right).$$

Now multiply through by g^{kt} since $g_{kl} \ g^{kt} = \delta_l^t$.

$$\sum_{k=1}^{n} \sum_{l=1}^{n} \Gamma_{ij}^{l} g_{kl} g^{kt} = \frac{1}{2} \sum_{k=1}^{n} g^{kt} \left(\frac{\partial g_{jk}}{\partial x^{i}} + \frac{\partial g_{ki}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{k}} \right)$$

$$\Gamma_{ij}^{t} = \frac{1}{2} \sum_{k=1}^{n} g^{kt} \left(\frac{\partial g_{jk}}{\partial x^{i}} + \frac{\partial g_{ki}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{k}} \right).$$

By renaming indices we get:

$$\Gamma_{jk}^{i} = \sum_{l=1}^{n} \frac{1}{2} g^{il} \left(\frac{\partial g_{kl}}{\partial x^{j}} + \frac{\partial g_{lj}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}} \right).$$