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            Appendix to Connections and Covariant Differentiation 

 

 

Γ𝑖𝑗
𝑘  is not a tensor, but how do the components change under a change of 

coordinates? 

 

 

Proposition:   

Let 𝑈 and 𝑈 be overlapping coordinate patches on a manifold, 𝑀, with 

            local coordinates (𝑥1, … , 𝑥𝑛) and (�̅�1, … , �̅�𝑛) respectively, then 

Γ̅𝑖𝑗
𝑘 =

𝜕𝑥𝑟

𝜕�̅�𝑗
 
𝜕𝑥𝑙

𝜕�̅�𝑖
 
𝜕�̅�𝑘

𝜕𝑥𝑚
 Γ𝑙𝑟

𝑚 +
𝜕2𝑥𝑚

𝜕�̅�𝑖  𝜕�̅�𝑗

𝜕�̅�𝑘

𝜕𝑥𝑚
 

 

Proof:            ∇ 𝜕

𝜕�̅�𝑖

(
𝜕

𝜕�̅�𝑗) = Γ̅𝑖𝑗
𝑘

 �̅�𝑘.   

 

By the Chain Rule:  

 

        
𝜕

𝜕�̅�𝑖
= ∑  

𝜕𝑥𝑙

𝜕�̅�𝑖

𝑛

𝑙=1

𝜕

𝜕𝑥𝑙
;              

𝜕

𝜕�̅�𝑗
= ∑  

𝜕𝑥𝑚

𝜕�̅�𝑗

𝑛

𝑚=1

𝜕

𝜕𝑥𝑚
 

 

     so      ∇ 𝜕

𝜕�̅�𝑖

(
𝜕

𝜕�̅�𝑗) = ∇
 
𝜕𝑥𝑙

𝜕�̅�𝑖
𝜕

𝜕𝑥𝑙

(
𝜕𝑥𝑚

𝜕�̅�𝑗  
𝜕

𝜕𝑥𝑚 ) . 
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By Property #3 in the definition of a connection we get: 

 

       Γ̅𝑖𝑗
𝑘 𝜕

𝜕�̅�𝑘 =  
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕

𝜕𝑥𝑙 (
𝜕𝑥𝑚

𝜕�̅�𝑗 )
𝜕

𝜕𝑥𝑚 +
𝜕𝑥𝑚

𝜕�̅�𝑗 ∇
 
𝜕𝑥𝑙

𝜕�̅�𝑖 
𝜕

𝜕𝑥𝑙

(
𝜕

𝜕𝑥𝑚 ) . 

 

By Property #1 we get: 
 

=
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕2𝑥𝑚

𝜕𝑥𝑙𝜕�̅�𝑗  
𝜕

𝜕𝑥𝑚 +
𝜕𝑥𝑚

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  ∇
 

𝜕

𝜕𝑥𝑙

(
𝜕

𝜕𝑥𝑚 )  

 

                       =
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕2𝑥𝑚

𝜕𝑥𝑙𝜕�̅�𝑗  
𝜕

𝜕𝑥𝑚 +
𝜕𝑥𝑚

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  Γ𝑙𝑚
𝑡 𝜕

𝜕𝑥𝑡 . 

 

Reindex the second term by replacing 𝑚 with 𝑟 and 𝑡 with 𝑚: 

 

                        =
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕2𝑥𝑚

𝜕𝑥𝑙𝜕�̅�𝑗  
𝜕

𝜕𝑥𝑚 +
𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  Γ𝑙𝑟
𝑚 𝜕

𝜕𝑥𝑚  

 

 Thus    Γ̅𝑖𝑗
𝑘 𝜕

𝜕�̅�𝑘 = (
𝜕𝑥𝑙

𝜕�̅�𝑖

𝜕2𝑥𝑚

𝜕𝑥𝑙 𝜕�̅�𝑗 +
𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  Γ𝑙𝑟
𝑚)

𝜕

𝜕𝑥𝑚 . 

 

Now apply both sides to �̅�𝑘: 
 

              Γ̅𝑖𝑗
𝑘 𝜕�̅�𝑘

𝜕�̅�𝑘 =
𝜕𝑥𝑙

𝜕�̅�𝑖

𝜕2𝑥𝑚

𝜕𝑥𝑙 𝜕�̅�𝑗

𝜕�̅�𝑘

𝜕𝑥𝑚 +
𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖

𝜕�̅�𝑘

𝜕𝑥𝑚 Γ𝑙𝑟
𝑚 . 
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Notice by the Chain Rule: 

 

𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗 =
𝜕

𝜕�̅�𝑖 (
𝜕𝑥𝑚

𝜕�̅�𝑗 ) =
𝜕2𝑥𝑚

𝜕𝑥𝑙 𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  ⟹ 

 

                    Γ̅𝑖𝑗
𝑘 =

𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕�̅�𝑘

𝜕𝑥𝑚  Γ𝑙𝑟
𝑚 +

𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗  
𝜕�̅�𝑘

𝜕𝑥𝑚 .  

 

 

Now let’s use this relationship to show: 

Proposition:       
𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗 = Γ̅𝑖𝑗
𝑠 𝜕𝑥𝑚

𝜕�̅�𝑠 −
𝜕𝑥𝑟

𝜕�̅�𝑗

𝜕𝑥𝑙

𝜕�̅�𝑖 Γ𝑙𝑟
𝑚 . 

 

 

Proof:  By the Chain Rule: 

𝛿𝑠
𝑘 =

𝜕�̅�𝑘

𝜕�̅�𝑠 =  
𝜕�̅�𝑘

𝜕𝑥𝑚

𝜕𝑥𝑚

𝜕�̅�𝑠  .  

 

Now take our previous result: 

 
 

                Γ̅𝑖𝑗
𝑘 =

𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕�̅�𝑘

𝜕𝑥𝑚  Γ𝑙𝑟
𝑚 +

𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗  
𝜕�̅�𝑘

𝜕𝑥𝑚  

 

 

Γ̅𝑖𝑗
𝑘 −

𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕�̅�𝑘

𝜕𝑥𝑚  Γ𝑙𝑟
𝑚 =

𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗  
𝜕�̅�𝑘

𝜕𝑥𝑚 . 
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Now multiply by 
𝜕𝑥𝑚

𝜕�̅�𝑠 : 

 

Γ̅𝑖𝑗
𝑘 𝜕𝑥𝑚

𝜕�̅�𝑠 −
𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  
𝜕�̅�𝑘

𝜕𝑥𝑚  
𝜕𝑥𝑚

𝜕�̅�𝑠 Γ𝑙𝑟
𝑚 =

𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗  
𝜕�̅�𝑘

𝜕𝑥𝑚

𝜕𝑥𝑚

𝜕�̅�𝑠   

 

           Γ̅𝑖𝑗
𝑘 𝜕𝑥𝑚

𝜕�̅�𝑠 −
𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖  𝛿𝑠
𝑘 Γ𝑙𝑟

𝑚 =
𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗  𝛿𝑠
𝑘  

 

                 Γ̅𝑖𝑗
𝑠 𝜕𝑥𝑚

𝜕�̅�𝑠 −
𝜕𝑥𝑟

𝜕�̅�𝑗  
𝜕𝑥𝑙

𝜕�̅�𝑖   Γ𝑙𝑟
𝑚 =  

𝜕2𝑥𝑚

𝜕�̅�𝑖 𝜕�̅�𝑗 . 

 

 

Now we can show that: 

 

Proposition:   𝑇𝑖 ;𝑘 =
𝜕𝑇𝑖

𝜕𝑥𝑘 − Γ𝑖𝑘
𝑗

𝑇𝑗  are the components of a (0, 2) tensor. 

 

 

Proof: 𝑇𝑖 are components of a (0,1) tensor, so:            �̅�𝑖 = 𝑇𝑗
𝜕𝑥𝑗

𝜕�̅�𝑖 . 

 

 Differentiating both sides we get: 

 

𝜕�̅�𝑖

𝜕�̅�𝑘 =
𝜕𝑇𝑗

𝜕�̅�𝑘  
𝜕𝑥𝑗

𝜕�̅�𝑖 + 𝑇𝑗  
𝜕2𝑥𝑗

𝜕�̅�𝑖 𝜕�̅�𝑘 . 
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 Now by the Chain Rule: 

 

                  =
𝜕𝑇𝑗

𝜕𝑥𝑟  
𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑗

𝜕�̅�𝑖 + 𝑇𝑗 (
𝜕2𝑥𝑗

𝜕�̅�𝑖 𝜕�̅�𝑘) . 

 

 Using 
𝜕2𝑥𝑗

𝜕�̅�𝑖 𝜕�̅�𝑘 = Γ̅𝑖𝑘
𝑠 𝜕𝑥𝑗

𝜕�̅�𝑠 −
𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑙

𝜕�̅�𝑖 Γ𝑙𝑟
𝑗

 we get: 

 

                               
𝜕�̅�𝑖

𝜕�̅�𝑘 =
𝜕𝑇𝑗

𝜕𝑥𝑟

𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑗

𝜕�̅�𝑖 + 𝑇𝑗 (Γ̅𝑖𝑘
𝑠 𝜕𝑥𝑗

𝜕�̅�𝑠 −
𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑙

𝜕�̅�𝑖 Γ𝑙𝑟
𝑗

)  

 

 

                                     =
𝜕𝑇𝑗

𝜕𝑥𝑟

𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑗

𝜕�̅�𝑖 + Γ̅𝑖𝑘
𝑠 𝑇𝑗

𝜕𝑥𝑗

𝜕�̅�𝑠 − Γ𝑙𝑟
𝑗

𝑇𝑗
𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑙

𝜕�̅�𝑖  

 

                           
𝜕�̅�𝑖

𝜕�̅�𝑘 =
𝜕𝑇𝑗

𝜕𝑥𝑟

𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑗

𝜕�̅�𝑖 + Γ̅𝑖𝑘
𝑠 �̅�𝑠 − Γ𝑙𝑟

𝑗
𝑇𝑗

𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑙

𝜕�̅�𝑖 . 

 

Now if we subtract Γ̅𝑖𝑘
𝑠 �̅�𝑠 from both sides and reindex the last term by        

switching 𝑙 and 𝑗, we get: 
 

                     
𝜕�̅�𝑖

𝜕�̅�𝑘 − Γ̅𝑖𝑘
𝑠 �̅�𝑠 = (

𝜕𝑇𝑗

𝜕𝑥𝑟 − Γ𝑗𝑟
𝑙 𝑇𝑙)

𝜕𝑥𝑟

𝜕�̅�𝑘  
𝜕𝑥𝑗

𝜕�̅�𝑖 .  

 

So ∇𝑘𝑇𝑖 = 𝑇𝑖 ;𝑘 =
𝜕𝑇𝑖

𝜕𝑥𝑘 − Γ𝑖𝑘
𝑗

𝑇𝑗 are the components of a (0, 2) tensor. 
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In Riemannian geometry there is a very special connection called the                 

Levi-Civita connection. 

Levi-Civita Theorem:   

Let (𝑀, 𝑔) be a Riemannian manifold. There exists a unique connection ∇ 

     that satisfies the following: 

 

1) ∇𝑔 = 0 
2) For all 𝑋, 𝑌 ∈ 𝜒(𝑀), [𝑋, 𝑌] = ∇𝑋𝑌 − ∇𝑌𝑋. 

 

Condition #1, ∇𝑔 = 0, is equivalent to saying that the following product      

rule holds: ∇𝑋(< 𝑌, 𝑍 >) = < ∇𝑋𝑌, 𝑍 > + < 𝑌, ∇𝑋𝑍 >  where                    

< 𝑋, 𝑌 > = 𝑔(𝑋, 𝑌). 

 

The second condition implies that: Γ𝑗𝑘
𝑖 = Γ𝑘𝑗

𝑖 . 

 

 

Proof:  Let ∇𝑍(< 𝑋, 𝑌 >) = 𝑍(𝑋, 𝑌). If the connection exists, then ∇𝑔 = 0 

                 and we have through the product rule: 

 

∗          𝑋(𝑌, 𝑍) = < ∇𝑋𝑌, 𝑍 > + < 𝑌, ∇𝑋𝑍 > 

 

∗∗        𝑌(𝑍, 𝑋) = < ∇𝑌𝑍, 𝑋 > + < 𝑍, ∇𝑌𝑋 > 

 

∗∗∗        𝑍(𝑋, 𝑌) = < ∇𝑍𝑋, 𝑌 > + < 𝑋, ∇𝑍𝑌 > 
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 Now if we add ∗ and ∗∗ while subtracting ∗∗∗, we get: 
 

𝑋(𝑌, 𝑍) + 𝑌(𝑍, 𝑋) − 𝑍(𝑋, 𝑌) 
 

= < ∇𝑋𝑌 − ∇𝑌𝑋, 𝑍 > + < ∇𝑋𝑍 − ∇𝑍𝑋, 𝑌 > 

+ < ∇𝑌𝑍 − ∇𝑍𝑌, 𝑋 > +2 < 𝑍, ∇𝑌𝑋 >. 

 

Using the fact that ∇ is symmetric, meaning [𝑋, 𝑌] = ∇𝑋𝑌 − ∇𝑌𝑋,          
we can write: 
 

𝑋(𝑌, 𝑍) + 𝑌(𝑍, 𝑋) − 𝑍(𝑋, 𝑌) 
 

= < [𝑋, 𝑌], 𝑍 > + < [𝑋, 𝑍], 𝑌 > + < [𝑌, 𝑍], 𝑋 > + 2 < 𝑍, ∇𝑋𝑌 >. 

 

Solving for < 𝑍, ∇𝑋𝑌 > we get: 

 

< 𝑍, ∇𝑋𝑌 >=
1

2
(𝑋(𝑌, 𝑍) + 𝑌(𝑍, 𝑋) − 𝑍(𝑋, 𝑌)                                                                               

                                       − < [𝑋, 𝑌], 𝑍 > − < [𝑋, 𝑍], 𝑌 >  − < [𝑌, 𝑍], 𝑋 >). 

 

 

The equation above will allow us to calculate Γ𝑗𝑘
𝑖  for ∇ in terms of the 

metric 𝑔. Thus, if ∇ exists, then it’s unique. To prove that such a connection   

exists one starts with the last equation and shows it satisfies ∇𝑔 = 0 and                        
[𝑋, 𝑌] = ∇𝑋𝑌 − ∇𝑌𝑋 (the two required conditions). 
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Proposition:  Let (𝑀, 𝑔) be a smooth manifold. Then, over a coordinate        

patch 𝑈 ⊆ 𝑀 with local coordinates (𝑥1, … , 𝑥𝑛) the Christoffel symbols             

of the Levi-Civita connection are given by 
 

Γ𝑗𝑘
𝑖 = ∑

1

2
𝑔𝑖𝑙 (

𝜕𝑔𝑘𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑙
)

𝑛

𝑙=1

 

 

 where 𝑔𝑖𝑗 are the entries to the inverse matrix (𝑔𝑘𝑙). 

 

 

Proof:  Let 𝑋 = 𝜕𝑖 , 𝑌 = 𝜕𝑗 , 𝑍 = 𝜕𝑘, then by the last equation in the      

previous proposition we can write: 
 

 

< 𝜕𝑘 , ∇𝜕𝑖
𝜕𝑗 > =

1

2
(∇𝜕𝑖

< 𝜕𝑗 , 𝜕𝑘 > + ∇𝜕𝑗
< 𝜕𝑘 , 𝜕𝑖 > 

                                         − ∇𝜕𝑘
< 𝜕𝑖 , 𝜕𝑗 > − < [𝜕𝑖 , 𝜕𝑗], 𝜕𝑘 >  

                                         − < [𝜕𝑖 , 𝜕𝑘], 𝜕𝑗 >  − < [𝜕𝑗 , 𝜕𝑘], 𝜕𝑖 >).   

Notice that [𝜕𝑖 , 𝜕𝑗] =
𝜕

𝜕𝑥𝑖  
𝜕

𝜕𝑥𝑗 −
𝜕

𝜕𝑥𝑗  
𝜕

𝜕𝑥𝑖 = 0 since by the smoothness mixed 

partial derivatives are equal. 

 

< 𝜕𝑘 , ∑ Γ𝑖𝑗
𝑙

𝑛

𝑙=1

𝜕𝑙 > 

=
1

2
(∇𝜕𝑖

< 𝜕𝑗 , 𝜕𝑘 > + ∇𝜕𝑗
< 𝜕𝑘 , 𝜕𝑖 > −∇𝜕𝑘

< 𝜕𝑖 , 𝜕𝑗 >). 
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 < 𝑋, 𝑌 > is a smooth function on 𝑀 so ∇𝜕𝑖
< 𝜕𝑗 , 𝜕𝑘 > is the 

 directional derivative of < 𝜕𝑗 , 𝜕𝑘 > in the direction of 𝜕𝑖. Thus: 

 

 ∇𝜕𝑖
< 𝜕𝑗, 𝜕𝑘 >=  

𝜕

𝜕𝑥𝑖
(𝑔𝑗𝑘) 

 

∑ Γ𝑖𝑗
𝑙

𝑛

𝑙=1

𝑔𝑘𝑙  =
1

2
(

𝜕

𝜕𝑥𝑖
(𝑔𝑗𝑘) +

𝜕

𝜕𝑥𝑗
(𝑔𝑘𝑖) −

𝜕

𝜕𝑥𝑘
(𝑔𝑖𝑗)). 

 
 

Now multiply through by 𝑔𝑘𝑡  since  𝑔𝑘𝑙  𝑔𝑘𝑡 = 𝛿𝑙
𝑡. 

 

∑ ∑ Γ𝑖𝑗
𝑙

𝑛

𝑙=1

𝑔𝑘𝑙𝑔𝑘𝑡

𝑛

𝑘=1

=
1

2
∑ 𝑔𝑘𝑡

𝑛

𝑘=1

(
𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑘𝑖

𝜕𝑥𝑗
−

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
) 

 

                            Γ𝑖𝑗
𝑡 =

1

2
∑ 𝑔𝑘𝑡

𝑛

𝑘=1

(
𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
+

𝜕𝑔𝑘𝑖

𝜕𝑥𝑗
−

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
). 

By renaming indices we get: 

 

                             Γ𝑗𝑘
𝑖

= ∑
1

2
𝑔𝑖𝑙

𝑛

𝑙=1

(
𝜕𝑔𝑘𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑘
−

𝜕𝑔𝑗𝑘

𝜕𝑥𝑙
). 


