Riemannian Metrics — Lengths and Volumes

Now that we have a metric on a Riemannian manifold, we can investigate
how to measure lengths of curves and “volumes” of regions on manifolds (note:
“volume” means length for a curve, surface area for a surface, volume for a 3-
dimensional region, and n-dimensional volume for an n-dimensional region).

We know from second year calculus that the length of a curve in R3 (using
the standard metric on ]R3) is given by:
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where the curve, Y, is given by:

y(t) =< x(t),y(t),z(t) > a<t<h.

We are going to generalize this definition to apply to curves on
n-dimensional manifolds with a Riemannian metric, g. Suppose we can
parametrize an n-dimensional manifold, M, by:

®:U € R" - M C Rk,

We can think of any curve, ¥, that lays on M as the image under E)) of a

. n —
curve, &, in U € R"™. v() = (ul(D), ... u™t))

soy(t) = B(ul(t), ..., u™(t)), where a(t) = (u(t), ..., u™(t)).



By the Chain Rule:

So we can write:
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where < , > is the inner product from the Riemannian metric g.

Notice that here we have used the metric induced by the parametrization @ of
M. However, we might have a Riemannian metric that doesn’t come from the

parametrization ®, but the following definition still holds.

Def. We define the length of a curve, ¥, on a Riemannian manifold, (M, g), by:
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Ex. Consider the portion of the great circle on the upper unit hemisphere

starting at (0,0, 1) and ending at (1, 0, 0). Find the length using the
metric induced by:

a) ®(u,v) = ((cos v)sinu, (sinv)sinu, (cos u))
0<u<>, 0<v<2m

b) ¥ (u,v) = (wv,v1—u?—v2); u?+v?2<1.

Q) O(u,v) = ((cosv) sinu, (sinv) sinu, (cos u));
0<su<’, 0<v<2m

- . .
®,, = ((cosv) cosu, (sinv) cosu,—sinu)

51, = (—(sinv) sinu, (cosv) sinu, 0)

g11 =Py - Py =1 g12 =921 = Py P, =0
g2z = Oy - @
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The portion of the great circle we want is the image under @ of

a(t) = (t,0); oszssg.

v(t) =0

i.e. u(t) =t,
v'(t) =0

u'(t) =1,
n 1
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b. We saw earlier that the metric induced on S? by

Y(u,v) = (u,v,V1 —u2 —v2) is:

1—v? uv
= _ | 1—u2—v?2 1—u2—v2
9= uv 1—u?

1—u2—v?2  1-u2—v2

The portion of the great circle we want is the image of the line segment
startingatu = 0,v = 0 andendingatu = 1,v = 0.
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a(t) = (t,0); 0<t<l1
u(t) =t, v(t) =0
u'(@)=1, v'()=0

L= fgl(g_u(u')z +2g12(W)H(@) + 5722(77’)2)% dt
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Any metric induced by a smooth parametrization of Ser should give the same

length of any curve on 542_. However, if we take a metric induced by a
parametrization and alter it, the resulting length could change.

Ex. Let’s take the metric induced on S_,Z_ by :

D(u,v) = ((cos v) sinu, (sinv) sinu, cos u)
and alter it asin a. and b. below, to see what happens to the length of the
portion of the great circle from (0,0, 1) to (1,0, 0).

a) letg=2(gy) =2(; )

0 sin’u
= 1 1 0
b) Let G = (1+u?2+v2)2 (O sin? u)'



The parametrization of the curve, y, isstill a(t) = (t,0); 0<t < %
u(t) =t, v(t) =0
u'(t)y=1, v'(t) =0.

a) So we can write:
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b) Here we get:
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In second year calculus, we learn that if a surface in ]R?’, S, is parametrized by
®: U € R? - S C R3, then the surface area of S is given by:

Area(S) = ﬂ ”611 X 5,,“ du dv.
U

Through a messy calculation, it can be shown that if g is the induced metric from

D (ie. gij = 5xi -5x,-), then ”8u X 8,,” = ,/detg so

Area(S) = ﬂ detg du dv.
U

We can generalize this formula to any smooth surface in R™ (not just ]R3) and
any Riemannian metric, g (not just metrics that are induced by parametrization).

In fact, the length of a curve formula is actually a special case of the “area”
formula. We can parametrize a curve on an n-dimensional manifold by:

o) = (u'(t), ..., u™(t))
$t = ((ul)/, ey (un),)'
Since we only have one dimension, the metric tensor, g,isa1l X 1 matrix:

9=, F= () ++ ()
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Andsince gisal X 1 matrix, g = detg. Thus:
dul\* dun\?2 1=,
NN o R (s Sy =7

Here @' (t) = y'(t) and so we can write:

J, Jdetgdt = [, lly'®)lldt  where U = [a,b].



Thus, the “area” formula is actually a generalization of the “length”
formula. In fact, we can generalize the “area” formula to be an n-dimensional
volume formula (where n = 1 is length, n = 2 is surface area).

Def. If g is a Riemannian metric on an n-dimensional manifold, M, then we
define the n-dimensional volume of M to be:

Vol(M) =f Jdetgdxt---dx™
M

where xl, -++, x™ are local coordinates. Here we are assuming that we can
parametrize all of M with one set of coordinates.

Ex. Find the surface area of the torus T? € R* parametrized by:

®(u,v) = (cosu,sinu,cosv,sinv); (u,v) € [0,2r]2.

3,1 = (—sinu,cosu,0,0)

31, = (0,0,—sinv,cosv)
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2T 2T 2T
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Ex. Find the 3-dimensional volume of the 3-dimensional torus
T =8 x ST x S§' C R® given by:

®(ul,u?,ud) = (cosul,sinul, cosu?,sinu?, cosu?,sinu?);

(ut,u?,u3) € [0, 2r]3.

We can see from the previous example:

1 0 O
g=<0 1 0); detg =1

0 0 1
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Ex. Find the area of the unit sphere in R3 using the parametrization:
d(u,v) = ((cos v)sinu, (sinv) sinu, cos u);
0<u<sm, 0<Zv<2m

We saw earlier that:

_(1 0, — cin?
g—(o sinzu)’ detg = sin“u

2T T 2T T
Area = j f sinu dudv = j f sinu du dv
v

=0+Ju=0 v=0+Ju=0
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2] —Cosu
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2T
dv=f 2dv =4m.
v

0 =0



Ex. Find the area of the subset of the unit disk in R? given by
1
x? + yz < 27 if the metric is given by:

9= 1):

1
(1-x2-y2)2 "

detg =

1
Area = ff dx dy .
J R R

Switch to polar coordinates: X =1rcosf
y = rsinf
dx dy = rdrd6.
V2 V2
2 2
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