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Riemannian Metrics – Lengths and Volumes 
 

Now that we have a metric on a Riemannian manifold, we can investigate 
how to measure lengths of curves and “volumes” of regions on manifolds (note: 
“volume” means length for a curve, surface area for a surface, volume for a 3-
dimensional region, and 𝑛-dimensional volume for an 𝑛-dimensional region). 

 
We know from second year calculus that the length of a curve in ℝ3 (using 

the standard metric on ℝ3) is given by: 
 

𝑙(𝛾) = ∫ ‖𝛾′(𝑡)‖ 𝑑𝑡
𝑏

𝑎

 

where the curve, 𝛾, is given by: 
 

𝛾(𝑡) = < 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) >;       𝑎 ≤ 𝑡 ≤ 𝑏. 
 

We are going to generalize this definition to apply to curves on                    

𝑛-dimensional manifolds with a Riemannian metric, 𝑔. Suppose we can 

parametrize an 𝑛-dimensional manifold, 𝑀, by: 
 

Φ⃗⃗⃗ : 𝑈 ⊆ ℝ𝑛 → 𝑀 ⊆ ℝ𝑘 . 
 

 We can think of any curve, 𝛾, that lays on 𝑀 as the image under Φ⃗⃗⃗  of a 
curve, 𝛼, in 𝑈 ⊆ ℝ𝑛. 
 
 
 
 
 
 
 
 
 

So 𝛾(𝑡) = Φ⃗⃗⃗ (𝑢1(𝑡), … , 𝑢𝑛(𝑡)), where 𝛼(𝑡) = (𝑢1(𝑡), … , 𝑢𝑛(𝑡)). 

𝑀 

𝛾(𝑡) = Φ⃗⃗⃗ (𝑢1(𝑡),… , 𝑢𝑛(𝑡)) 

𝑈 

𝛼(𝑡) = (𝑢1(𝑡), … , 𝑢𝑛(𝑡)) 

Φ⃗⃗⃗  
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By the Chain Rule: 

𝛾′(𝑡) = Φ⃗⃗⃗ 𝑢1
𝑑𝑢1

𝑑𝑡
+ ⋯+ Φ⃗⃗⃗ 𝑢𝑛

𝑑𝑢𝑛

𝑑𝑡
      

 

So we can write:  

 
‖𝛾′(𝑡)‖2 = 𝛾′(𝑡) ⋅ 𝛾′(𝑡) 
 

                 = (Φ⃗⃗⃗ 𝑢1
𝑑𝑢1

𝑑𝑡
+ ⋯+ Φ⃗⃗⃗ 𝑢𝑛

𝑑𝑢𝑛

𝑑𝑡
) ⋅ (Φ⃗⃗⃗ 𝑢1

𝑑𝑢1

𝑑𝑡
+ ⋯+ Φ⃗⃗⃗ 𝑢𝑛

𝑑𝑢𝑛

𝑑𝑡
)  

 

                   = ∑ 𝑔𝑖𝑗

𝑛

𝑖,𝑗=1

𝑑𝑢𝑖

𝑑𝑡

𝑑𝑢𝑗

𝑑𝑡
= < 𝛾′(𝑡), 𝛾′(𝑡) >  

 

where <  , > is the inner product from the Riemannian metric 𝑔. 
 
 
 

Notice that here we have used the metric induced by the parametrization Φ⃗⃗⃗  of 
𝑀. However, we might have a Riemannian metric that doesn’t come from the 

parametrization Φ⃗⃗⃗ , but the following definition still holds. 
 
 
 
Def.  We define the length of a curve, 𝛾, on a Riemannian manifold,  (𝑀, 𝑔), by: 

 

𝑙(𝛾) = ∫ √< 𝛾′(𝑡), 𝛾′(𝑡) >  𝑑𝑡 = ∫ √ ∑ 𝑔𝑖𝑗

𝑛

𝑖,𝑗=1

𝑑𝑢𝑖

𝑑𝑡

𝑑𝑢𝑗

𝑑𝑡

𝑏

𝑎

𝑏

𝑎

𝑑𝑡. 
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Ex.    Consider the portion of the great circle on the upper unit hemisphere 
 starting at (0, 0, 1) and ending at (1, 0, 0). Find the length using the 

           metric induced by: 

 

a) Φ⃗⃗⃗ (𝑢, 𝑣) = ((cos 𝑣) sin 𝑢 , (sin 𝑣) sin 𝑢 , (cos 𝑢))  

            0 ≤ 𝑢 ≤
𝜋

2
,     0 ≤ 𝑣 ≤ 2𝜋.  

 

      b) Ψ⃗⃗⃗ (𝑢, 𝑣) = (𝑢, 𝑣, √1 − 𝑢2 − 𝑣2);     𝑢2 + 𝑣2 ≤ 1. 

 
 

 

𝑎)  Φ⃗⃗⃗ (𝑢, 𝑣) = ((cos 𝑣) sin 𝑢 , (sin 𝑣) sin 𝑢 , (cos 𝑢));  

               0 ≤ 𝑢 ≤
𝜋

2
,     0 ≤ 𝑣 ≤ 2𝜋.  

 
 
 
 
 
 
 
 
 

 
 

Φ⃗⃗⃗ 𝑢 = ((cos 𝑣) cos 𝑢 , (sin 𝑣) cos 𝑢 ,− sin 𝑢) 
 

Φ⃗⃗⃗ 𝑣 = (−(sin 𝑣) sin 𝑢 , (cos 𝑣) sin 𝑢 , 0) 
 
 

                         𝑔11 = Φ⃗⃗⃗ 𝑢 ⋅ Φ⃗⃗⃗ 𝑢 = 1                 𝑔12 = 𝑔21 = Φ⃗⃗⃗ 𝑢 ⋅ Φ⃗⃗⃗ 𝑣 = 0 
 

                         𝑔22 = Φ⃗⃗⃗ 𝑣 ⋅ Φ⃗⃗⃗ 𝑣 = sin2 𝑢 
 
 

𝑔 = (
1 0
0 sin2 𝑢 

). 
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The portion of the great circle we want is the image under Φ⃗⃗⃗  of 

 𝛼(𝑡) = (𝑡, 0);     0 ≤ 𝑡 ≤
𝜋

2
  . 

 
 

i.e.  𝑢(𝑡) = 𝑡,        𝑣(𝑡) = 0 
      𝑢′(𝑡) = 1,       𝑣′(𝑡) = 0  

 

𝐿 = ∫ (𝑔11(𝑢
′)2 + 2𝑔12(𝑢

′)(𝑣′) + 𝑔22(𝑣
′)2)

1
2 𝑑𝑡

𝜋
2

0

 

 

                        = ∫ 1 𝑑𝑡

𝜋
2

0

=
𝜋

2
 . 

 
 
 

b. We saw earlier that the metric induced on 𝑆2 by  

Ψ⃗⃗⃗ (𝑢, 𝑣) = (𝑢, 𝑣, √1 − 𝑢2 − 𝑣2)  is: 
 

𝑔̅ = (

1−𝑣2

1−𝑢2−𝑣2

𝑢𝑣

1−𝑢2−𝑣2

𝑢𝑣

1−𝑢2−𝑣2

1−𝑢2

1−𝑢2−𝑣2

)      

 
 The portion of the great circle we want is the image of the line segment 
           starting at 𝑢 = 0, 𝑣 = 0 and ending at 𝑢 = 1, 𝑣 = 0. 
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  𝛼(𝑡) = (𝑡, 0);          0 ≤ 𝑡 ≤ 1  
 

 𝑢(𝑡) = 𝑡,          𝑣(𝑡) = 0 
 

𝑢′(𝑡) = 1,        𝑣′(𝑡) = 0  
 

 𝐿 = ∫ (𝑔̅11(𝑢
′)2 + 2𝑔̅12(𝑢

′)(𝑣′) + 𝑔̅22(𝑣
′)2)

1

2 𝑑𝑡
1

0
 

 

                = ∫ (
1

1 − 𝑡2
)

1
2
 𝑑𝑡

1

0

= sin−1(𝑡)|0
1 =

𝜋

2
 . 

 
 
 
Any metric induced by a smooth parametrization of 𝑆+

2 should give the same 

length of any curve on 𝑆+
2. However, if we take a metric induced by a 

parametrization and alter it, the resulting length could change. 
 
 
Ex.   Let’s take the metric induced on 𝑆+

2 by : 

Φ⃗⃗⃗ (𝑢, 𝑣) = ((cos 𝑣) sin 𝑢 , (sin 𝑣) sin 𝑢 , cos 𝑢) 
 and alter it as in a. and b. below,  to see what happens to the length of the 

            portion of the great circle from (0, 0, 1) to (1, 0, 0). 
 

a) Let 𝑔̃ = 2(𝑔𝑖𝑗) = 2 (
1 0
0 sin2 𝑢

)  

 

b) Let 𝐺̅ = 
1

(1+𝑢2+𝑣2)2
 (
1 0
0 sin2 𝑢

). 
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The parametrization of the curve, 𝛾, is still 𝛼(𝑡) = (𝑡, 0);    0 ≤ 𝑡 ≤
𝜋

2
 

 𝑢(𝑡) = 𝑡,          𝑣(𝑡) = 0 
 

𝑢′(𝑡) = 1,        𝑣′(𝑡) = 0.  
 

a) So we can write: 

 

𝐿 = ∫ (𝑔̃11(𝑢
′)2 + 2𝑔̃12(𝑢

′)(𝑣′) + 𝑔̃22(𝑣
′)2)

1
2 𝑑𝑡

𝜋
2

0

 
 

               = ∫ (2)
1
2 𝑑𝑡

𝜋
2

0

=
√2𝜋

2
 . 

 
 

b) Here we get: 
 

𝐿 = ∫ (𝐺̅11(𝑢
′)2 + 2𝐺̅12(𝑢

′)(𝑣′) + 𝐺̅22(𝑣
′)2)

1
2 𝑑𝑡

𝜋
2

0

 
 

     = ∫ (
1

(1 + 𝑡2)2
)

1
2
 𝑑𝑡

𝜋
2

0

= ∫
1

1 + 𝑡2
 𝑑𝑡

𝜋
2

0

 

 

     = tan−1(𝑡)|0

𝜋
2 = tan−1 (

𝜋

2
). 
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In second year calculus, we learn that if a surface in ℝ3, 𝑆, is parametrized by 

Φ⃗⃗⃗ : 𝑈 ⊆ ℝ2 → 𝑆 ⊆ ℝ3, then the surface area of 𝑆 is given by: 

𝐴𝑟𝑒𝑎(𝑆) = ∬ ‖Φ⃗⃗⃗ 𝑢 × Φ⃗⃗⃗ 𝑣‖
𝑈

𝑑𝑢 𝑑𝑣. 

 

Through a messy calculation, it can be shown that if 𝑔 is the induced metric from 

Φ⃗⃗⃗  (i.e. 𝑔𝑖𝑗 = Φ⃗⃗⃗ 𝑥𝑖 ⋅ Φ⃗⃗⃗ 𝑥𝑗), then ‖Φ⃗⃗⃗ 𝑢 × Φ⃗⃗⃗ 𝑣‖ = √det 𝑔 so 
 

                                   𝐴𝑟𝑒𝑎(𝑆) = ∬ √det 𝑔
𝑈

 𝑑𝑢 𝑑𝑣. 

 

We can generalize this formula to any smooth surface in ℝ𝑛 (not just ℝ3) and 

any Riemannian metric, 𝑔 (not just metrics that are induced by parametrization). 
 
 

In fact, the length of a curve formula is actually a special case of the “area” 
formula. We can parametrize a curve on an 𝑛-dimensional manifold by: 
 

Φ⃗⃗⃗ (𝑡) = (𝑢1(𝑡), … , 𝑢𝑛(𝑡)) 
 

    Φ⃗⃗⃗ 𝑡 = ((𝑢1)′, … , (𝑢𝑛)′). 
 
 

Since we only have one dimension, the metric tensor, 𝑔, is a 1 ×  1 matrix:  
 

𝑔 = Φ⃗⃗⃗ 𝑡 ⋅ Φ⃗⃗⃗ 𝑡 = (
𝑑𝑢1

𝑑𝑡
)
2

+ ⋯+ (
𝑑𝑢𝑛

𝑑𝑡
)
2

 .      
 

 

 And since 𝑔 is a 1 ×  1 matrix, 𝑔 = det 𝑔. Thus: 
 
 

√det 𝑔 = √(
𝑑𝑢1

𝑑𝑡
)
2

+ ⋯+ (
𝑑𝑢𝑛

𝑑𝑡
)
2

= ‖Φ⃗⃗⃗ ′(𝑡)‖.  
 
 

Here Φ⃗⃗⃗ ′(𝑡) = 𝛾′(𝑡) and so we can write:  

 

               ∫ √det 𝑔
𝑈

𝑑𝑡 = ∫ ‖𝛾′(𝑡)‖
𝑈

𝑑𝑡        where 𝑈 = [𝑎, 𝑏]. 
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Thus, the “area” formula is actually a generalization of the “length” 
formula. In fact, we can generalize the “area” formula to be an 𝑛-dimensional 
volume formula (where 𝑛 = 1 is length, 𝑛 = 2 is surface area). 

 
Def.  If 𝑔 is a Riemannian metric on an 𝑛-dimensional manifold, 𝑀, then we 
         define the 𝒏-dimensional volume of 𝑀 to be: 
 

𝑉𝑜𝑙(𝑀) = ∫ √det 𝑔
𝑀

𝑑𝑥1 ⋯𝑑𝑥𝑛 

 

 where 𝑥1, ⋯ , 𝑥𝑛 are local coordinates. Here we are assuming that we can 

            parametrize all of 𝑀 with one set of coordinates.  

 

 
Ex.   Find the surface area of the torus 𝑇2 ⊆ ℝ4 parametrized by: 
 

Φ⃗⃗⃗ (𝑢, 𝑣) = (cos 𝑢 , sin 𝑢 , cos 𝑣 , sin 𝑣);      (𝑢, 𝑣) ∈ [0, 2𝜋]2. 
 

Φ⃗⃗⃗ 𝑢 = (−sin 𝑢 , cos 𝑢 , 0, 0) 
 

Φ⃗⃗⃗ 𝑣 = (0, 0, − sin 𝑣 , cos 𝑣) 
 
 

                                          𝑔11 = Φ⃗⃗⃗ 𝑢 ⋅ Φ⃗⃗⃗ 𝑢 = 1 
 
 

                             𝑔12 = 𝑔21 = Φ⃗⃗⃗ 𝑢 ⋅ Φ⃗⃗⃗ 𝑣 = 0 
 
 

                                           𝑔22 = Φ⃗⃗⃗ 𝑣 ⋅ Φ⃗⃗⃗ 𝑣 = 1 
 

𝑔 = (
1 0
0 1

) 

 
                                                 det 𝑔 = 1. 
 

𝑆. 𝐴𝑟𝑒𝑎 = ∫ ∫ √1
2𝜋

0

2𝜋

0

 𝑑𝑢 𝑑𝑣 = ∫ 𝑢
2𝜋

0

|
0

2𝜋

𝑑𝑣 = ∫ 2𝜋
2𝜋

0

𝑑𝑣 = 4𝜋2. 
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Ex.   Find the 3-dimensional volume of the 3-dimensional torus   
 𝑇 = 𝑆1  ×  𝑆1  ×  𝑆1 ⊆ ℝ6 given by: 
 

Φ⃗⃗⃗ (𝑢1, 𝑢2, 𝑢3) = (cos 𝑢1 , sin 𝑢1 , cos 𝑢2 , sin 𝑢2 , cos 𝑢3 , sin 𝑢3); 
 

(𝑢1, 𝑢2, 𝑢3) ∈ [0, 2𝜋]3. 
 

We can see from the previous example: 
 

𝑔 = (
1 0 0
0 1 0
0 0 1

) ;        det 𝑔 = 1 

 

  𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ ∫ ∫ √1
2𝜋

0

2𝜋

0

2𝜋

0

 𝑑𝑢1𝑑𝑢2𝑑𝑢3 = ∫ ∫ 𝑢1
2𝜋

0

|
0

2𝜋

𝑑𝑢2𝑑𝑢3
2𝜋

0

 

 

= ∫ ∫ 2𝜋
2𝜋

0

 𝑑𝑢2𝑑𝑢3
2𝜋

0

= ∫ 4𝜋2
2𝜋

0

𝑑𝑢3 = 8𝜋3. 

 
 
Ex.  Find the area of the unit sphere in ℝ3 using the parametrization: 

                 Φ⃗⃗⃗ (𝑢, 𝑣) = ((cos 𝑣) sin 𝑢 , (sin 𝑣) sin 𝑢 , cos 𝑢);                                             

                                   0 ≤ 𝑢 ≤ 𝜋 ,     0 ≤ 𝑣 ≤ 2𝜋.                     
 
 
 
 

We saw earlier that: 
 

𝑔 = (
1 0
0 sin2 𝑢

) ;        det 𝑔 = sin2 𝑢 

 

𝐴𝑟𝑒𝑎 = ∫ ∫ √sin2 𝑢
𝜋

𝑢=0

 𝑑𝑢 𝑑𝑣
2𝜋

𝑣=0

= ∫ ∫ sin 𝑢
𝜋

𝑢=0

 𝑑𝑢 𝑑𝑣
2𝜋

𝑣=0

 

 

                         = ∫ −cos 𝑢
2𝜋

𝑣=0

|
0

𝜋

𝑑𝑣 = ∫ 2 𝑑𝑣
2𝜋

𝑣=0

= 4𝜋 . 
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Ex.  Find the area of the subset of the unit disk in ℝ2 given by 

 𝑥2 + 𝑦2 ≤
1

2
 ,    if the metric is given by: 

 

                                   𝑔 =
1

1−𝑥2−𝑦2 (
1 0
0 1

) . 

 
 

 

det 𝑔 =  
1

(1−𝑥2−𝑦2)2
 . 

 

 𝐴𝑟𝑒𝑎 = ∬ √
1

(1 − 𝑥2 − 𝑦2)2𝑥2+𝑦2≤
1
2

 𝑑𝑥 𝑑𝑦  . 

 
 

Switch to polar coordinates:                 𝑥 = 𝑟𝑐𝑜𝑠𝜃 
                                                              𝑦 = 𝑟𝑠𝑖𝑛𝜃 
                                                     𝑑𝑥 𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃.    

 

= ∫ ∫ (
1

1 − 𝑟2
) 𝑟 𝑑𝑟 𝑑𝜃

√2
2

𝑟=0

2𝜋

𝜃=0

= ∫ −
1

2
ln(1 − 𝑟2)|

0

√2
22𝜋

0

𝑑𝜃 

 

= ∫ −
1

2
(ln (1 −

1

2
) − ln(1))

2𝜋

0

𝑑𝜃 = ∫ −
1

2
ln (

1

2
)𝑑𝜃

2𝜋

0

 

 

               = −
1

2
ln (

1

2
) 𝜃|

0

2𝜋

= −𝜋 ln (
1

2
) = 𝜋 ln 2  . 

 
 

 
 


