Functions from \mathbb{R}^n to \mathbb{R}^m - HW Problems

1. Let $\bar{x}_1 = x_1 \cos(x_2)$ and $\bar{x}_2 = x_1 \sin(x_2)$. Suppose that $f \colon \mathbb{R}^2 \to \mathbb{R}$ is a smooth function of \bar{x}_1 and \bar{x}_2 . Show that:

$$\left(\frac{\partial f}{\partial \bar{x}_1}\right)^2 + \left(\frac{\partial f}{\partial \bar{x}_2}\right)^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 + \frac{1}{x_1^2} \left(\frac{\partial f}{\partial x_2}\right)^2.$$

2. Let $z_1 = 2y_1 + 3y_2$ $y_1 = e^{x_1} + x_2$ $z_2 = y_1 y_2^2$ $y_2 = e^{(x_1 - x_2)} + x_1.$

Use the chain rule to find $\frac{\partial z_i}{\partial x_j}$ for i, j = 1, 2 in term of x_1 and x_2 . You don't need to simplify your answer.

- 3. Let x = 2r s and y = r + 2s. Let $U: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function. Find $\frac{\partial^2 U}{\partial y \partial x}$ in terms of derivatives of only U with respect to r and s.
- 4. Suppose $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ by

 $\Phi(\mathbf{x}_1, \mathbf{x}_2) = (u(x_1, x_2), v(x_1, x_2), w(x_1, x_2)) \text{ is a smooth function.}$ Furthermore, suppose that $\alpha \colon \mathbb{R} \to \mathbb{R}^2$ is a smooth curve given by $\alpha(t) = (f(t), g(t)).$ Using the chain rule find an expression for $\frac{d}{dt}(\Phi(\alpha(t)), \text{ in terms of } u, v, w, f, \text{ and } g \text{ (and/or their derivatives).}$

- 5. Let $f(x, y, z) = x^2 y z^3$.
 - a. Find the directional derivative of f at the point (1,1,-1) in the direction of $\vec{w} = < -1,2,1 >$.
 - b. Find the directional derivative of f at any point (x, y, z) in the direction of $\vec{w} = < -1, 2, 1 >$.
 - Note: Your answer to a. should be a number while your answer to b. should be a non-constant function of x, y, z.