Smooth Maps, Tangent Planes and Derivatives- HW Problems

1. Find an equation of the tangent plane to the hemisphere given by

$$\overrightarrow{\Phi}(u,v)=(u,v,\sqrt{1-u^2-v^2})\;;\;\;u^2+v^2<1,$$
 at the point where $u=\frac{1}{2}\;$ and $\;v=\frac{1}{2}\;$.

- 2. Find an equation of the tangent plane to the helicoid given by $\overrightarrow{\Phi}(u,v)=(vcos(u),vsin(u),2u)$, at the point $(\sqrt{2},\sqrt{2},\frac{\pi}{2})$.
- 3. Suppose S is the upper hemisphere of the unit sphere given by $\overrightarrow{\Phi}(u,v)=(u,v,\sqrt{1-u^2-v^2})\;;\;\;u^2+v^2<1.$ Let $f\colon S\to S$ by $f\left(\overrightarrow{\Phi}(u,v)\right)=(-v,-u,\sqrt{1-u^2-v^2}).\;\; \text{Find }D_pf.$
- 4. Let S be the portion of the unit sphere given by

$$\overrightarrow{\Phi}(u,v) = ((\cos(v))(\sin(u)), (\sin(v))(\sin(u)), \cos(u))$$
 where $0 \le u < \frac{\pi}{2}$, $0 < v \le 2\pi$. (ie the upper hemisphere).

Let M also be the upper hemisphere but parametrized by

$$\overrightarrow{\Psi}(u,v) = (\overline{u}, \overline{v}, \sqrt{1 - \overline{u}^2 - \overline{v}^2}); \quad (\overline{u})^2 + (\overline{v})^2 < 1.$$
 Let $f: S \to M$ by $f(x,y,z) = (-y,x,z); \quad (x,y,z) \in S.$ Find $D_p f$.

5. Let S be a surface in \mathbb{R}^3 given by $\overrightarrow{\Phi}(u,v)=(u,v,\ uv);\ u,v\in\mathbb{R}.$ Let $M=S^2_+=\{(x,y,z)\in\mathbb{R}^3|\ x^2+y^2+z^2=1,\ z>0\}$ be the upper unit hemisphere. Define $f\colon S\to M$ by

$$f(u,v,uv) = \left(-\frac{v}{\sqrt{1+u^2+v^2}} , -\frac{u}{\sqrt{1+u^2+v^2}} , \frac{1}{\sqrt{1+u^2+v^2}}\right).$$
 Let $\overrightarrow{\Psi}^{-1}$: $M \to \mathbb{R}^2$ by $\overrightarrow{\Psi}^{-1}(\bar{u},\bar{v},\sqrt{1-\bar{u}^2-\bar{v}^2}) = (\bar{u},\bar{v}).$

- a. Find $D_p f$ in the basis $\frac{\partial \overrightarrow{\Phi}}{\partial u}$, $\frac{\partial \overrightarrow{\Phi}}{\partial v}$.
- b. Let $\overrightarrow{w} \in T_{(2,-2,-4)}S$, where $\overrightarrow{w} = \frac{\partial \overrightarrow{\Phi}}{\partial u} 2\frac{\partial \overrightarrow{\Phi}}{\partial v}$ at the point where u=2 and v=-2. Find $D_{(2,-2,-4)}f(\overrightarrow{w})$ in terms of the basis vectors $\frac{\partial \overrightarrow{\Psi}}{\partial \overline{u}}$, $\frac{\partial \overrightarrow{\Psi}}{\partial \overline{v}}$ and in terms of the standard basis in \mathbb{R}^3 and show that These two representations of $D_{(2,-2,-4)}f(\overrightarrow{w})$ are the same.