Def: Let U be an open set in \mathbb{R}^m , we say:

 $\vec{f} \colon U \to \mathbb{R}^n$ by: $\vec{f}(x_1, ..., x_m) = (f_1(x_1, ..., x_m), f_2(x_1, x_2, ..., x_m), ..., f_n(x_1, ..., x_m))$ is **smooth** if $f_i(x_1, ..., x_m)$ has continuous partial derivatives of all orders for $i = 1, \ldots, n$.

So if
$$
\vec{\Phi}(u, v) = (x(u, v), y(u, v), z(u, v))
$$
, then $\vec{\Phi}$ is smooth if:
\n
$$
\vec{\Phi}_u = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right); \qquad \vec{\Phi}_v = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
$$
\n
$$
\vec{\Phi}_{uu} = \left(\frac{\partial^2 x}{\partial u^2}, \frac{\partial^2 y}{\partial u^2}, \frac{\partial^2 z}{\partial u^2}\right); \qquad \vec{\Phi}_{uv} = \left(\frac{\partial^2 x}{\partial u \partial v}, \frac{\partial^2 y}{\partial u \partial v}, \frac{\partial^2 z}{\partial u \partial v}\right), \dots
$$

has continuous partial derivatives of all orders.

Def. Let $U \subseteq \mathbb{R}^2$ be an open set. A **surface patch** (i.e. a parametrization)

 $\overrightarrow{\Phi}: U \rightarrow \mathbb{R}^3$ of a surface, S , is called regular if it is smooth and the vectors:

$$
\vec{\Phi}_u = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right) \text{ and } \vec{\Phi}_v = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
$$

are linearly independent at all points $(u, v) \in U$. This is equivalent to saying: $\overrightarrow{\Phi}_{u} \times \overrightarrow{\Phi}_{v} \neq 0$ for any point $(u, v) \in U$.

- Def. If S is a surface, an **allowable surface patch** for S is a regular surface patch, $\overrightarrow{\Phi} : U \rightarrow \mathbb{R}^3$, such that $\overrightarrow{\Phi}$ and $\overrightarrow{\Phi}^{-1}$ are continuous (this is called a **homeomorphism**) from U to an open subset of S . A **smooth** or regular **surface** is a surface, S, such that for any point $p \in S$, there is an allowable patch, $\overrightarrow{\Phi}$, such that $p \in \overrightarrow{\Phi}(U)$. A collection, A, of allowable surface patches for a surface S such that every point of S is in the image of at least one patch in \vec{A} is called an **atlas** for the smooth surface \vec{S} .
- Def. (Alternative Definition) A subset $S \subseteq \mathbb{R}^3$ is a **smooth or regular surface** if for each point $p \in S$ there exists an open set, $U \subseteq \mathbb{R}^2$, an open neighborhood Q of p in \mathbb{R}^3 and a surjective continuous function $\overrightarrow{\Phi}: U \to Q \cap S$ (surjective means every point $q \in Q \cap S$ has a point $p \in U$ such that $\overrightarrow{\Phi}(p) = q$) such that:
	- 1) $\overrightarrow{\Phi}$ is smooth, i.e. if $\overrightarrow{\Phi}(u, v) = (x(u, v), y(u, v), z(u, v))$ the $x(u, v)$, $y(u, v)$ and $z(u, v)$ have continuous partial derivatives of all orders.
	- 2) $\overrightarrow{\Phi}$ is a homeomorphism: $\overrightarrow{\Phi}$ is continuous and has an inverse function $\overrightarrow{\Phi}^{-1}\!\!: \!Q\cap S\rightarrow U$, which is also continuous.
	- 3) $\overrightarrow{\Phi}_{u} \times \overrightarrow{\Phi}_{v} \neq \overrightarrow{0}$ for any $(u, v) \in U$.

Ex. Show that the unit cylinder $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ is a smooth surface.

$$
\overrightarrow{\Phi}(u,v) = (\cos u, \sin u, v); \quad 0 \le u \le 2\pi, \quad v \in \mathbb{R}
$$

is a parametrization of this cylinder, however the set:

$$
V = \{(u, v) \in \mathbb{R}^2 \mid 0 \le u \le 2\pi, v \in \mathbb{R}\}
$$

is not an open set in \mathbb{R}^2 .

So consider the open set:

$$
U = \{(u, v) \in \mathbb{R}^2 \mid 0 < u < 2\pi, v \in \mathbb{R}\}.
$$

 U is open but $\overrightarrow{\Phi}(U)$ does not cover all of the surface S (the line $(1,0, z)$ is missing).

However, $\overrightarrow{\Phi}$ is $1 - 1$ from U into S , since if:

$$
\vec{\Phi}(u_1, v_1) = \vec{\Phi}(u_2, v_2) \text{ then:}
$$

$$
(\cos u_1, \sin u_1, v_1) = (\cos u_2, \sin u_2, v_2)
$$

This implies $v_1 = v_2$ and:

$$
\cos u_1 = \cos u_2 \implies u_2 = u_1 \text{ or } 2\pi - u_1
$$

\n
$$
\sin u_1 = \sin u_2 \implies u_2 = u_1 \text{ or } \pi - u_1.
$$

\nSo $u_1 = u_2$ and $\vec{\Phi}$ is $1 - 1$.

It's clear that $\overrightarrow{\Phi}$ is smooth. But we need to show that $\overrightarrow{\Phi}$ has a a continuous inverse, $\overrightarrow{\Phi}^{-1}$: $\overrightarrow{\Phi}(U) \to U$. For $\{(x,y,z) \in \overrightarrow{\Phi}(U)\}$ define:

$$
\vec{\Phi}^{-1}(x, y, z) = (Tan^{-1}\left(\frac{y}{x}\right), z) \qquad \text{if } (x, y) \text{ is in the 1st quadrant}
$$
\n
$$
= \left(\frac{\pi}{2}, z\right) \qquad \text{if } (x, y) = (0, 1)
$$
\n
$$
= \left(\pi + Tan^{-1}\left(\frac{y}{x}\right), z\right) \qquad \text{if } (x, y) \text{ is in the 2nd/3rd quadrant}
$$
\n
$$
= \left(\frac{3\pi}{2}, z\right) \qquad \text{if } (x, y) = (0, -1)
$$
\n
$$
= \left(2\pi + Tan^{-1}\left(\frac{y}{x}\right), z\right) \qquad \text{if } (x, y) \text{ is in the 4th quadrant.}
$$

We need this messy inverse function because $-\frac{\pi}{2}$ $\frac{\pi}{2}$ < tan⁻¹ t < $\frac{\pi}{2}$ $\frac{\pi}{2}$ and $\overrightarrow{\Phi}^{-1}$ maps $\vec{\Phi}(U)$ onto $U = (0, 2\pi) \times (-\infty, \infty)$.

It's not too difficult to show that $\overrightarrow{\Phi}^{-1}$ is continuous.

But we need another open set, W, so that $\overrightarrow{\Phi}: W \subseteq \mathbb{R}^2 \to S$ such that the points that we missed by $\overrightarrow{\Phi}: U \to S$ get covered by $\overrightarrow{\Phi}(W)$. Here we can just take:

 $W = \{(u, v) \in \mathbb{R}^2 | -\pi < u < \pi, v \in \mathbb{R} \}.$

By the same argument, $\overrightarrow{\Phi}$ is $1 - 1$ on W

Now we have:

$$
\vec{\Phi}_u = (-\sin u, \cos u, 0)
$$

$$
\vec{\Phi}_v = (0, 0, 1).
$$

 $\overrightarrow{\Phi}_u$ and $\overrightarrow{\Phi}_v$ are linearly independent because one vector is not a multiple of the other. We can also see it by:

$$
\vec{\Phi}_u \times \vec{\Phi}_v = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -\sin u & \cos u & 0 \\ 0 & 0 & 1 \end{vmatrix} = (\cos u)\vec{i} + (\sin u)\vec{j} \neq \vec{0}
$$

So S is a smooth surface.

Ex. Show that the unit sphere $S = \{(x, y, z) | x^2 + y^2 + z^2 = 1 \}$ is a smooth surface.

One smooth, regular parametrization of the unit sphere is given by:

 $\vec{\Phi}(\phi, \theta) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi); 0 < \phi < \pi, 0 < \theta < 2\pi.$

In a manner similar to the previous example, it can be shown that

 $\overrightarrow{\Phi}$ is $1-1$ and has a continuous inverse given by:

$$
\vec{\Phi}^{-1}(x, y, z) = (\cos^{-1} z, \text{ Tan}^{-1}\left(\frac{y}{x}\right)) \qquad \text{if } (x, y) \text{ is in the 1st quadrant}
$$
\n
$$
= (\cos^{-1} z, \frac{\pi}{2}) \qquad \text{if } (x, y) = (0, 1)
$$
\n
$$
= (\cos^{-1} z, \pi + \text{T}an^{-1}\left(\frac{y}{x}\right)) \qquad \text{if } (x, y) \text{ is in the 2nd/3rd quadrant}
$$
\n
$$
= (\cos^{-1} z, \frac{3\pi}{2}) \qquad \text{if } (x, y) = (0, -1)
$$
\n
$$
= (\cos^{-1} z, \frac{2\pi}{2} + \text{T}an^{-1}\left(\frac{y}{x}\right)) \qquad \text{if } (x, y) \text{ is in the 4th quadrant.}
$$

To show $\overrightarrow{\Phi}_{u} \times \overrightarrow{\Phi}_{v} \neq \overrightarrow{0}$: $\vec{\Phi}_{\phi} = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi)$ $\vec{\Phi}_{\theta} = (-\sin \theta \sin \phi$, cos $\theta \sin \phi$, 0) $\overrightarrow{\Phi}_{\phi}\times\overrightarrow{\Phi}_{\theta}=\bigg\vert$ \vec{l} \vec{j} \vec{k} $\cos \theta \cos \phi$ sin $\theta \cos \phi$ $-\sin \phi$ $-\sin\theta\sin\phi\quad\cos\theta\sin\phi\quad 0$ | $=$ cos θ sin² ϕ \vec{l} + sin θ sin² ϕ \vec{l} +(cos² θ sin ϕ cos ϕ + sin² θ sin ϕ cos ϕ) \vec{k}

$$
\vec{\Phi}_{\phi} \times \vec{\Phi}_{\theta} = \cos \theta \sin^2 \phi \, \vec{\iota} + \sin \theta \sin^2 \phi \, \vec{\jmath} + \sin \phi \cos \phi \, \vec{k}.
$$

We can see that $\overrightarrow{\Phi}_{\phi}\times\overrightarrow{\Phi}_{\theta}\neq0$ by showing its length is never $0.$ $\|\vec{\Phi}_{\phi} \times \vec{\Phi}_{\theta}\| = \sqrt{\cos^2 \theta \sin^4 \phi + \sin^2 \theta \sin^4 \phi + \sin^2 \phi \cos^2 \phi}$ $=\sqrt{\left(\cos^2 \theta + \sin^2 \theta\right) \sin^4 \phi + \sin^2 \phi \cos^2 \phi}$ $=\sqrt{\sin^4 \phi + \sin^2 \phi (\cos^2 \phi)}$ $=\sqrt{\sin^2 \phi (\sin^2 \phi + \cos^2 \phi)}$ $= |\sin \phi| > 0$ since $0 < \phi < \pi$.

However, $\overrightarrow{\Phi}$ does not map the set:

$$
U = \{(\phi, \theta) \in \mathbb{R}^2 \mid 0 < \phi < \pi, \ 0 < \theta < 2\pi\}
$$

onto the unit sphere. The semicircle on the sphere of points of the form $(x, 0, z)$, $x \ge 0$ is missing (black semi-cirlce in previous picture).

So now let's consider the set: $H = \{(x, y, z) \in \mathbb{R}^3 | x \le 0, z = 0\}$, and consider $W = S - H$ (W is open). W is the sphere with the semicircle $(x, y, 0), x \le 0$ missing.

Now define: $\overrightarrow{\Psi}$: $U \rightarrow S - H = W$ by,

 $\vec{\Psi}(\phi,\theta) = (-\cos\theta\sin\phi,\cos\phi,-\sin\theta\sin\phi), 0 < \phi < \pi, 0 < \theta < 2\pi.$ As with the map $\overrightarrow{\Phi}$, $\overrightarrow{\Psi}$ is smooth and a homeomorphism.

And we have:

$$
\overrightarrow{\Psi}_{\phi} = (-\cos\theta\cos\phi, -\sin\phi, -\sin\theta\cos\phi)
$$

$$
\overrightarrow{\Psi}_{\theta} = (\sin\theta\sin\phi, 0, -\cos\theta\sin\phi)
$$

$$
\vec{\Psi}_{\phi} \times \vec{\Psi}_{\theta} = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ -\cos \theta \cos \phi & -\sin \phi & -\sin \theta \cos \phi \\ \sin \theta \sin \phi & 0 & -\cos \theta \sin \phi \end{vmatrix}
$$

= $\cos \theta \sin^2 \phi \vec{\i} - (\cos^2 \theta \cos \phi \sin \phi + \sin^2 \theta \cos \phi \sin \phi)\vec{j}$ + sin θ sin² ϕ \vec{k}

$$
= (\cos \theta \sin^2 \phi)\vec{\iota} - (\sin \phi \cos \phi)\vec{j} + \sin \theta \sin^2 \phi \vec{k}.
$$

As before, $\big\|\overrightarrow{\Psi}_{\!\phi}\times\overrightarrow{\Psi}_{\!\theta}\big\|=|\sin\phi|>0$ since $0<\phi<\pi.$ So $\|\overrightarrow{\Psi}_{\phi}\times\overrightarrow{\Psi}_{\theta}\| \neq \vec{0}.$

Since $\vec{\Phi}(U) \cup \vec{\Psi}(W) \supseteq S$ and $\vec{\Phi}$ and $\vec{\Psi}$ are homeomorphisms, S is a smooth surface.

This is not the only way to show that S is a smooth surface. For example, we could use 6 open patches (open sets) on the sphere. Each of the maps below map the set $U = \{ (u,v) | u^2 + v^2 < 1 \}$ in \mathbb{R}^2 onto a different hemisphere:

$$
\vec{\Phi}_1(u, v) = (u, v, \sqrt{1 - u^2 - v^2}); \quad z > 0
$$

$$
\vec{\Phi}_2(u, v) = (u, v, -\sqrt{1 - u^2 - v^2}); \quad z < 0
$$

$$
\vec{\Phi}_3(u, v) = (u, \sqrt{1 - u^2 - v^2}, v); \quad y > 0
$$

$$
\vec{\Phi}_4(u, v) = (u, -\sqrt{1 - u^2 - v^2}, v); \quad y < 0
$$

$$
\vec{\Phi}_5(u, v) = (\sqrt{1 - u^2 - v^2}, u, v); \quad x > 0
$$

$$
\vec{\Phi}_6(u, v) = (-\sqrt{1 - u^2 - v^2}, u, v); \quad x < 0
$$

Each of these $\overrightarrow{\Phi}_i$ S has the property that it's a homeomorphism from the disk $u^2 + v^2 < 1$ in \mathbb{R}^2 onto a hemisphere and it is regular. We'll demonstrate this with $\overrightarrow{\Phi}_{1}(u,v).$

- 1. $\overrightarrow{\Phi}_1$ is clearly smooth for $u^2 + v^2 < 1$.
- 2. $\overrightarrow{\Phi}_1$ is 1-1 since:

$$
\vec{\Phi}_1(u_1, v_1) = \vec{\Phi}_1(u_2, v_2)
$$

$$
(u_1, v_1, \sqrt{1 - u_1^2 - v_1^2}) = (u_2, v_2, \sqrt{1 - u_2^2 - v_2^2})
$$

$$
\Rightarrow u_1 = u_2 \quad v_1 = v_2, \text{ so } \vec{\Phi}_1 \text{ is 1-1.}
$$

3. $\vec{\Phi}_1^{-1}(x, y, z) = (x, y) \text{ is the continuous inverse of } \vec{\Phi}_1.$

4. $(\vec{\Phi}_1)_u \times (\vec{\Phi}_1)_v \neq 0$ since:

$$
\left(\vec{\Phi}_1\right)_u = \left(1, 0, \frac{-u}{\sqrt{1 - u^2 - v^2}}\right) \qquad \left(\vec{\Phi}_1\right)_v = \left(0, 1, \frac{-v}{\sqrt{1 - u^2 - v^2}}\right)
$$

$$
(\vec{\Phi}_1)_u \times (\vec{\Phi}_1)_v = \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ 1 & 0 & \frac{-u}{\sqrt{1 - u^2 - v^2}} \\ 0 & 1 & \frac{-v}{\sqrt{1 - u^2 - v^2}} \end{vmatrix} = \frac{u}{\sqrt{1 - u^2 - v^2}} \vec{\iota} + \frac{v}{\sqrt{1 - u^2 - v^2}} \vec{j} + \vec{k}
$$

$$
\left\| \left(\vec{\Phi}_1 \right)_u \times \left(\vec{\Phi}_1 \right)_v \right\| = \sqrt{\frac{u^2}{1 - u^2 - v^2} + \frac{v^2}{1 - u^2 - v^2} + 1} = \sqrt{\frac{1}{1 - u^2 - v^2}} \neq 0
$$

$$
\mathrm{So}\left(\vec{\Phi}_1\right)_u \times \left(\vec{\Phi}_1\right)_v \neq 0.
$$

Since $\bigcup_{i=1}^6 \overrightarrow{\Phi}_i$ 6 $\sum_{i=1}^{6} \Phi_i (U) \supseteq S$, S is a smooth surface.