Space Curves and the Frenet Formulas- HW Problems

- 1. Find the curvature, $\kappa(t)$, and the torsion, $\tau(t)$, of $\gamma(t) = (t \sin(t), 1 \cos(t), t)$.
- 2. Calculate the torsion, $\tau(t)$, of $\gamma(t) = (\cosh(t), \sinh(t), t)$.

3. Calculate the curvature, $\kappa(t)$, and the torsion, $\tau(t)$, and the Frenet frame \vec{T} , \vec{N} , and \vec{B} for the curve $\gamma(t) = (2t, t^2, \frac{t^3}{3})$.

4. Let γ be a curve in \mathbb{R}^3 with $\gamma'(0) = (1, 1, 1)$, $\gamma''(0) = (2, 0, 1)$, and $\gamma'''(0) = (0, -1, 1)$. Calculate s'(0), s''(0), $\kappa(0)$, $\tau(0)$, the Frenet frame \vec{T} , \vec{N} , and \vec{B} , and $\frac{d\vec{T}}{dt}$, $\frac{d\vec{N}}{dt}$, and $\frac{d\vec{B}}{dt}$ at t = 0, where s(t) is the arc length function.

5. Let $\gamma(t) = (x(t), a, z(t)); a \in \mathbb{R}$, be a smooth, regular curve. Show by direct calculation that $\tau(t) = 0$ for all t as long as $\|\gamma'(t) \times \gamma''(t)\| \neq 0$.