Plane Curves

For plane curves it is possible to define curvature so that it can be positive
or negative.
Suppose Y (S) is a unit speed parameterization of a plane curve y. Then y'(s) is
a unit tangent vector to ¥ at (). Let’s call this tangent vector, T = y'(s).
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Since ¥ is a plane curve there are two unit vectors perpendicularto T.
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v(s)

We will choose the signed unit normal, N (N; above), of y to be the unit vector

= A
obtained by rotating T counterclockwise by 5"

Note: If T = (a, b) then ﬁ; = (—b,a).



Since y'(s) - y'(s) = 1, by differentiating this equation we get:
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Thus "’ is perpendicularto T = y'(s), just as N is. Thus we can write:

"' (s) = ks N

K, is called the signed curvature of y.

Notice that since ”N)S” = 1 we have:
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where K is the (unsigned) curvature of y.

Ex. Let’s consider two unit speed parameterization of the unit circle, one going
counterclockwise as S increases, and one going clockwise as s increases
y1(s) = (cos(s), sin(s))
Y2(s) = (cos(s), —sin(s)).

Calculate the signed curvatures of y; and ¥,

yi(s)




Ty = ¥'1(s) = (—sin(s), cos(s))
Ny(s) = (— cos(s), — sin(s))
yi'(s) = (= cos(s), — sin(s)) = 1(N;)

So the signed curvature of Y4 is equal to 1 at all points.

T, = ¥'3(s) = (—sin(s), — cos(s))
Ny(s) = (cos(s), — sin(s))
y4'(s) = (= cos(s),sin(s)) = —1( Ny)

So the signed curvature of ¥ is equal to —1 at all points.

In general we have:
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If y(t) is a regular plane curve (not necessarily unit speed) we define its unit

tangent T, its signed normal N, and its signed curvature K to be those of a unit

speed parametrization of . Thus we have:
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N is again obtained by rotating T by % counterclockwise and
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The signed curvature has a simple geometric interpretation in terms of the rate at
which the tangent vector rotates. Let y be a unit speed curve, then if @(s) is the
angle the tangent vector makes with the x-axis we have:

¥'(s) = (cos(@(s)), sin(¢(s)))

@ (s) is called the turning angle of y.



Proposition: Let ¥ (S) be a unit speed plane curve, then kg

Proof: T = (cos @, sin @)
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Now we can derive a formula to K¢ for any smooth, regular curve in a plane.
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Suppose y(t) = (x(t), y(t)), then:
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JENZ+ (), since = = V' (D).

Sincey'(t) = (x'(t),y'(t)) is tangent to y(t)
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Ex. Find the signed curvature of y(t) = (cost + tsint,sint — t cost).

y(t)
x(t) =cost + tsint

x'(t) = —sint + tcost + sint

=1tcost

x'"'(t) = —tsint + cost

y(t) =sint — tcost
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y'(t) =cost+tsint —cost =tsint

y'"'(t) =tcost +sint

X'y =y
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Ex. Suppose Y is a curve in RZ. Using the formula for the curvature, K, of

a curve in R3 (or ]Rz), and the formula for the signed curvature, K,

in R?, show |k| = k.

Let y(t) = (x(t),y(t),0).
Y'(t) = (x'(t),y'(t),0).
Y'(@) = (x"(t),y"(t),0).
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The fact that kg = d_f has an interesting consequence for the total

curvature of unit speed closed curves in a plane. If we let [ be the
length of the closed curve, then:

Total signed curvature = féi—fds = @) —p(0) =2nmn; ne€Z.



Fundamental Theorem of Plane Curves: let k: (a, f) = R be any
smooth function. Then, there is a unit speed curve ¥: (a, ) = R?
whose signed curvature is k. Furthermore, if ¥: (a, ) = R? is
any other unit speed curve whose signed curvature is K, then

Y and Yy differ by a rotation and/or a translation.

Idea of Proof: Given any smooth function k: (a, ) = R we want to

construct a curve ¥(S) such that ks = Z—? = k for y(s).
/
~ |sin(e(s))
)P(S)
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JEEEE "
v'(s) = T = (cos ¢, sin @)
" dT . d d
Y'(s) = 5 = (~Gin @) £, (cos ) ZE).
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We can find a curve Y (s) with d_f = K by integrating this last expression twice:

y'(s) = (J —(sinp) Fds, [(cosp)ZEds)
= (cos p(s) + Cy,sinp(s) + C,)
¥(s) = (J(cos p(s) + Cy)ds, [ sin(p(s) + C;)ds).



