As we saw earlier, there are many different parametrizations for the same curve.

Ex. $\gamma_1(t) = (\cos t, \sin t) \qquad 0 \le t \le 2\pi$ $\gamma_2(t) = (\cos 2t \sin 2t)$ $0 \le t \le \pi$ $\gamma_3(t) = (\sin t, \cos t) \qquad 0 \le t \le 2\pi$

These are all representations of the circle $x^2 + y^2 = 1$.

Def. $\;$ A parametrized curve $\bar{\gamma}$: $(\bar{a},\bar{b})\rightarrow \mathbb{R}^n$ is a reparametrization of a parametrized curve $\gamma\colon (a,b)\to \mathbb{R}^n$ if there is a smooth bijective map φ

(i.e. 1-1 and onto)

 φ : $(\bar{a}, \bar{b}) \rightarrow (a, b)$ such that the inverse map:

 $\varphi^{-1}\hbox{\rm :}\,(a,b)\to(\bar a,\bar b)$ is also smooth and

$$
\bar{\gamma}(\bar{t}) = \gamma(\varphi(\bar{t})) \text{ for all } \bar{t} \in (\bar{a}, \bar{b}).
$$

Ex. $\gamma_2(t) = (\cos 2t \sin 2t)$ and $\gamma_3(t) = (\sin t \cos t)$ are both reparametrizations of $\gamma_1(t)=(\cos t$, $\sin t)$ since:

if
$$
\varphi(t) = 2t
$$
 then
\n
$$
\gamma_2(t) = \gamma_1(\varphi(t))
$$
\n
$$
= \gamma_1(2t)
$$
\n
$$
= (\cos 2t, \sin 2t).
$$

And if
$$
\varphi(t) = \frac{\pi}{2} - t
$$
 then
\n
$$
\gamma_3(t) = \gamma_1(\varphi(t)) = \gamma_1(\frac{\pi}{2} - t)
$$
\n
$$
= (\cos(\frac{\pi}{2} - t), \sin(\frac{\pi}{2} - t))
$$
\n
$$
= (\sin t, \cos t).
$$

It turns out that the analysis of a curve is simplified if it is parametrized in a way that has unit speed (i.e. $\|\gamma'(t)\|=1$).

- Def: A point $\gamma(t)$ of a parametrized curve γ is called a **regular point** if $\gamma'(t) \neq \vec{0}$. Otherwise, $\gamma'(t)$ is a **singular point** of γ . A curve is **regular** if all of its points are regular.
- Ex. $\gamma_1(t) = (t, t^2)$ is a regular parametrization of $y = x^2$ because $\gamma_1'(t) = (1, 2t) \neq (0, 0)$ for any t. However, $\gamma_2(t)=(t^3,t^6)$ is not a regular parametrization of $y = x^2$ because $\gamma_2'(t) = (3t^2, 6t^5)$ which is $(0,0)$ at $t = 0$.

Prop: Any reparametrization of a regular curve is regular.

Proof: Let $\gamma(t)$ be a regular curve. We must show given a reparametrization, $\gamma(\varphi(t)),$ that $\frac{d}{dt}$ $\frac{d}{dt}(\gamma(\varphi(t)))$ exists and is never $\vec{0}$. Let $\psi = \varphi^{-1}$ then $\psi\bigl(\varphi(t)\bigr) = t.$ Using the chain rule we get: $\psi'(\varphi(t))\varphi'(t)=1;$ thus $\varphi'(t)\neq 0.$ Applying the chain rule to $\gamma(\varphi(t))$ we get: $\frac{d}{dt}(\gamma(\varphi(t))) = \gamma'(\varphi(t))\varphi'(t).$ γ is regular so $\gamma'\neq\vec{0}$, and $\varphi'(t)\neq0$, so $\displaystyle{\frac{d}{dt}\Big(\gamma\big(\varphi(t)\big)\Big)\neq\vec{0}}.$ \boldsymbol{d} $\frac{u}{dt}(\gamma\big(\varphi(t)\big))$ also exists by the chain rule, so $\gamma\big(\varphi(t)\big))$ is regular.

Prop: If $\gamma(t)$ is a regular curve then its arc length, S, starting at any point of γ , is a smooth function of t.

Proof: We saw earlier that $s = \int_{t_0}^{t} ||\gamma'(u)||$ $\int_{t_0}^t$ || $\gamma'(u)$ || du , so $\,ds$ $\frac{ds}{dt} = ||\gamma'(t)||.$ If $\gamma(t) = (u(t), v(t))$ and $\gamma'(t) = (u'(t), v'(t))$, then:

$$
\frac{ds}{dt} = \sqrt{(u')^2 + (v')^2} = ((u')^2 + (v')^2)^{\frac{1}{2}}
$$

$$
\frac{d^2s}{dt^2} = \frac{1}{2}((u')^2 + (v')^2)^{-\frac{1}{2}}(2(u')u'' + 2(v')v'').
$$

Now if $f(x) = \sqrt{x}$ for $x > 0$, then we know $\ f^{(n)}(x)$ exists for all $x > 0, n > 1$.

Thus, since u, v are smooth and $(u')^2 + (v')^2 > 0$ (since $\gamma(t)$ is

regular), $\frac{ds}{dt}$ is smooth for all t and hence so is $s(t)$.

Prop: A parametrized curve has a unit speed reparametrization if and only if it is regular.

Generally, we will be using the statement that if γ is regular then it has a unit speed reprametrization. This follows from the inverse function theorem.

Corallary: Let γ be a regular curve and let $\bar{\gamma}$ be a unit speed reparametrization

of γ : $\bar{\gamma}(u(t)) = \gamma(t)$, for all t where u is a smooth function of t.

Then, if S is the arc length of γ (starting at any point), we have:

 $u = \pm s + c$; where *c* is a constant.

Conversely, if u is given by $u = \pm s + c$, then \bar{y} is a unit speed reparametrization of γ .

Thus we can think of any unit speed parametrization of a curve as being parametrized by (a translation of) arc length.

Ex. Show that $\gamma(t) = (e^t \sin t$, $e^t \cos t$, $e^t)$ is a regular

curve for $t \in \mathbb{R}$ and find a unit speed reparametrization of $\gamma(t)$.

$$
\gamma'(t) = (e^t(\cos t + \sin t), e^t(\cos t - \sin t), e^t)
$$

$$
||\gamma'(t)|| = \sqrt{3}e^t \neq 0 \text{ for any } t \in \mathbb{R}
$$

Thus $\gamma(t)$ is a regular curve for $t \in \mathbb{R}$.

The arc length starting at $\gamma(0) = (0,1,1)$ is written as:

$$
s = \int_0^t \sqrt{3}e^u \ du = \sqrt{3}(e^t - 1)
$$

To write $\gamma(t)$ in terms of s we need to solve $s=\sqrt{3}(e^{t}-1)$ for t in terms of S .

To do this we must find the inverse function of

$$
s(t) = \sqrt{3}(e^t - 1):
$$

$$
\frac{s}{\sqrt{3}} = e^t - 1
$$

$$
\frac{s}{\sqrt{3}} + 1 = e^t
$$

$$
\ln(\frac{s}{\sqrt{3}} + 1) = t.
$$

Now to find $\gamma(t) = (e^t \sin t$, $e^t \cos t, e^t)$ in terms of s , substitute $t = \ln(\frac{s}{t})$ $\frac{s}{\sqrt{3}}$ + 1) into the formula for $\gamma(t)$.

Notice:

$$
e^t = e^{\ln(\frac{s}{\sqrt{3}}+1)} = \frac{s}{\sqrt{3}}+1.
$$

Thus, $\gamma(t) = (e^t \sin t$, $e^t \cos t, e^t)$ becomes: $\bar{\gamma}(s) = \Big(\Big(\frac{s}{\sqrt{s}}\Big)$ $\frac{s}{\sqrt{3}}+1\right)\sin(\ln\left(\frac{s}{\sqrt{3}}\right))$ $\left(\frac{s}{\sqrt{3}}+1\right)$), $\left(\frac{s}{\sqrt{3}}\right)$ $\frac{s}{\sqrt{3}}+1\right) \cos(\ln\left(\frac{s}{\sqrt{3}}\right))$ $\frac{s}{\sqrt{3}}+1$)), $\frac{s}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}+1$).

Note: In general it can be very difficult (or even impossible) to write a given regular curve $\gamma(t)$ in terms of elementary functions of a unit speed parameter S. This is because $s = \int_{t_0}^{t} ||\gamma'(u)||$ $\int_{t_0}^t$ $\|\gamma'(u)\| \, du$ often can't be written in terms of elementary functions, and if it can, finding the inverse function of $s(t)$ could be very difficult.

Ex. Notice that the circle $x^2 + y^2 = 1$ given by $\gamma(t) = (\cos t, \sin t)$, where $t \in \mathbb{R}$, is already a unit speed parametrization.

$$
\gamma'(t) = (-\sin t, \cos t)
$$

$$
\|\gamma'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2} = 1.
$$

It's clear that some curves, like circles and ellipses, have the property that a point will return to its starting point and then retrace the same curve. However, one can have a curve where a point returns to its starting point but does not retrace the same curve. For example: $\gamma(t)=(t^3-t,t^2-1); \hspace{0.5cm} t\in \mathbb{R}.$

Def. Let $\gamma: \mathbb{R} \to \mathbb{R}^n$ be a smooth curve and let $T \in \mathbb{R}$.

We say γ is **T-periodic** if: $\gamma(t + \text{T}) = \gamma(t)$ for all $t \in \mathbb{R}$.

If γ is not constant and is T-periodic for some $T \neq 0$, then γ is said to be **closed.**

Notice that a T-periodic curve γ is determined by its restriction to any interval of length |Τ|. So, closed curves can be thought of as:

 γ : [a, b] $\rightarrow \mathbb{R}^n$ where $b - a = |\text{T}|$ and $\gamma(b) = \gamma(a)$, as well as $\gamma^n(b) = \gamma^n(a)$.

Def. The **period** of a closed curve γ is the smallest positive number T such that γ is Τ-periodic.

Ex. $\gamma(t) = (\cos 4t, \sin 4t)$ is a closed curve (a circle of period $\frac{\pi}{2}$).

- Def. A curve (closed or not) is said to have a **self-intersection at a point,** \boldsymbol{p} , on the curve if there exist parameter values $a \neq b$ such that:
	- i) $\gamma(a) = \gamma(b) = p$.
	- ii) If γ is closed with period T, then $a b$ is not an integer multiple of Τ.

Ex. $\gamma(t) = (t^3 - t, t^2 - 1); \quad t \in \mathbb{R}$ has a self intersection point at $t = \pm 1$, but is not a closed curve since there is no T such that $\gamma(t + T) = \gamma(t)$ for all $t \in \mathbb{R}$.

Ex. The limacon given by:

$$
\gamma(t) = ((1 + 2 \cos t) \cos t, (1 + 2 \cos t) \sin t); t \in \mathbb{R}
$$

is a closed curve of period 2π and has a self-intersection point at $(0,0)$.

