As we saw earlier, there are many different parametrizations for the same curve.

Ex. $\gamma_1(t) = (\cos t, \sin t)$ $0 \le t \le 2\pi$ $\gamma_2(t) = (\cos 2t, \sin 2t)$ $0 \le t \le \pi$ $\gamma_3(t) = (\sin t, \cos t)$ $0 \le t \le 2\pi$

These are all representations of the circle $x^2 + y^2 = 1$.

Def. A parametrized curve $\overline{\gamma}: (\overline{a}, \overline{b}) \to \mathbb{R}^n$ is a reparametrization of a parametrized curve $\gamma: (a, b) \to \mathbb{R}^n$ if there is a smooth bijective map φ

(i.e. 1-1 and onto)

 $\varphi: (\bar{a}, \bar{b}) \rightarrow (a, b)$ such that the inverse map:

 φ^{-1} : $(a, b) \rightarrow (\overline{a}, \overline{b})$ is also smooth and

$$\bar{\gamma}(\bar{t}) = \gamma(\varphi(\bar{t}))$$
 for all $\bar{t} \in (\bar{a}, \bar{b})$.

Ex. $\gamma_2(t) = (\cos 2t, \sin 2t)$ and $\gamma_3(t) = (\sin t, \cos t)$ are both reparametrizations of $\gamma_1(t) = (\cos t, \sin t)$ since:

if
$$\varphi(t) = 2t$$
 then
 $\gamma_2(t) = \gamma_1(\varphi(t))$
 $= \gamma_1(2t)$
 $= (\cos 2t, \sin 2t).$

And if
$$\varphi(t) = \frac{\pi}{2} - t$$
 then

$$\gamma_3(t) = \gamma_1(\varphi(t)) = \gamma_1\left(\frac{\pi}{2} - t\right)$$

$$= (\cos\left(\frac{\pi}{2} - t\right), \sin\left(\frac{\pi}{2} - t\right))$$

$$= (\sin t, \cos t).$$

It turns out that the analysis of a curve is simplified if it is parametrized in a way that has unit speed (i.e. $\|\gamma'(t)\| = 1$).

- Def: A point $\gamma(t)$ of a parametrized curve γ is called a **regular point** if $\gamma'(t) \neq \vec{0}$. Otherwise, $\gamma'(t)$ is a **singular point** of γ . A curve is **regular** if all of its points are regular.
- Ex. $\gamma_1(t) = (t, t^2)$ is a regular parametrization of $y = x^2$ because $\gamma'_1(t) = (1, 2t) \neq (0, 0)$ for any t. However, $\gamma_2(t) = (t^3, t^6)$ is not a regular parametrization of $y = x^2$ because $\gamma'_2(t) = (3t^2, 6t^5)$ which is (0, 0) at t = 0.

Prop: Any reparametrization of a regular curve is regular.

Proof: Let $\gamma(t)$ be a regular curve. We must show given a reparametrization, $\gamma(\varphi(t))$, that $\frac{d}{dt}(\gamma(\varphi(t)))$ exists and is never $\vec{0}$. Let $\psi = \varphi^{-1}$ then $\psi(\varphi(t)) = t$. Using the chain rule we get: $\psi'(\varphi(t))\varphi'(t) = 1$; thus $\varphi'(t) \neq 0$. Applying the chain rule to $\gamma(\varphi(t))$ we get: $\frac{d}{dt}(\gamma(\varphi(t))) = \gamma'(\varphi(t))\varphi'(t)$. γ is regular so $\gamma' \neq \vec{0}$, and $\varphi'(t) \neq 0$, so $\frac{d}{dt}(\gamma(\varphi(t))) \neq \vec{0}$. $\frac{d}{dt}(\gamma(\varphi(t)))$ also exists by the chain rule, so $\gamma(\varphi(t))$ is regular.

Prop: If $\gamma(t)$ is a regular curve then its arc length, *S*, starting at any point of γ , is a smooth function of *t*.

Proof: We saw earlier that $s = \int_{t_0}^t ||\gamma'(u)|| du$, so $\frac{ds}{dt} = ||\gamma'(t)||$. If $\gamma(t) = (u(t), v(t))$ and $\gamma'(t) = (u'(t), v'(t))$, then:

$$\frac{ds}{dt} = \sqrt{(u')^2 + (v')^2} = \left(\left(u'\right)^2 + \left(v'\right)^2\right)^{\frac{1}{2}}$$
$$\frac{d^2s}{dt^2} = \frac{1}{2}\left(\left(u'\right)^2 + \left(v'\right)^2\right)^{-\frac{1}{2}}\left(2\left(u'\right)u'' + 2\left(v'\right)v''\right)$$

Now if $f(x) = \sqrt{x}$ for x > 0, then we know $f^{(n)}(x)$ exists for all $x > 0, n \ge 1$.

Thus, since u, v are smooth and $(u')^2 + (v')^2 > 0$ (since $\gamma(t)$ is

regular), $\frac{ds}{dt}$ is smooth for all t and hence so is S(t).

Prop: A parametrized curve has a unit speed reparametrization if and only if it is regular.

Generally, we will be using the statement that if γ is regular then it has a unit speed reprametrization. This follows from the inverse function theorem.

Corallary: Let γ be a regular curve and let $\overline{\gamma}$ be a unit speed reparametrization

of γ : $\overline{\gamma}(u(t)) = \gamma(t)$, for all t where u is a smooth function of t.

Then, if *s* is the arc length of γ (starting at any point), we have:

 $u = \pm s + c$; where *c* is a constant.

Conversely, if u is given by $u = \pm s + c$, then $\overline{\gamma}$ is a unit speed reparametrization of γ .

Thus we can think of any unit speed parametrization of a curve as being parametrized by (a translation of) arc length.

Ex. Show that $\gamma(t) = (e^t \sin t, e^t \cos t, e^t)$ is a regular

curve for $t \in \mathbb{R}$ and find a unit speed reparametrization of $\gamma(t)$.

$$\gamma'(t) = (e^t(\cos t + \sin t), e^t(\cos t - \sin t), e^t)$$
$$\|\gamma'(t)\| = \sqrt{3}e^t \neq 0 \text{ for any } t \in \mathbb{R}$$

Thus $\gamma(t)$ is a regular curve for $t \in \mathbb{R}$.

The arc length starting at $\gamma(0) = (0,1,1)$ is written as:

$$s = \int_0^t \sqrt{3}e^u \, du = \sqrt{3}(e^t - 1)$$

To write $\gamma(t)$ in terms of *s* we need to solve $s = \sqrt{3}(e^t - 1)$ for *t* in terms of *s*.

To do this we must find the inverse function of

$$s(t) = \sqrt{3}(e^{t} - 1):$$
$$\frac{s}{\sqrt{3}} = e^{t} - 1$$
$$\frac{s}{\sqrt{3}} + 1 = e^{t}$$
$$\ln(\frac{s}{\sqrt{3}} + 1) = t.$$

Now to find $\gamma(t) = (e^t \sin t, e^t \cos t, e^t)$ in terms of *s*, substitute $t = \ln(\frac{s}{\sqrt{3}} + 1)$ into the formula for $\gamma(t)$.

Notice:

$$e^t = e^{\ln(\frac{s}{\sqrt{3}}+1)} = \frac{s}{\sqrt{3}} + 1.$$

Thus, $\gamma(t) = (e^t \sin t, e^t \cos t, e^t)$ becomes: $\bar{\gamma}(s) = \left(\left(\frac{s}{\sqrt{3}} + 1\right)\sin\left(\ln\left(\frac{s}{\sqrt{3}} + 1\right)\right), \left(\frac{s}{\sqrt{3}} + 1\right)\cos\left(\ln\left(\frac{s}{\sqrt{3}} + 1\right)\right), \frac{s}{\sqrt{3}} + 1\right)$.

Note: In general it can be very difficult (or even impossible) to write a given regular curve $\gamma(t)$ in terms of elementary functions of a unit speed parameter s. This is because $s = \int_{t_0}^t ||\gamma'(u)|| du$ often can't be written in terms of elementary functions, and if it can, finding the inverse function of s(t) could be very difficult.

Ex. Notice that the circle $x^2 + y^2 = 1$ given by $\gamma(t) = (\cos t, \sin t)$, where $t \in \mathbb{R}$, is already a unit speed parametrization.

$$\gamma'(t) = (-\sin t, \cos t)$$
$$\|\gamma'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2} = 1$$

It's clear that some curves, like circles and ellipses, have the property that a point will return to its starting point and then retrace the same curve. However, one can have a curve where a point returns to its starting point but does not retrace the same curve. For example: $\gamma(t) = (t^3 - t, t^2 - 1); \quad t \in \mathbb{R}.$

Def. Let $\gamma \colon \mathbb{R} \to \mathbb{R}^n$ be a smooth curve and let $T \in \mathbb{R}$.

We say γ is **T-periodic** if: $\gamma(t + T) = \gamma(t)$ for all $t \in \mathbb{R}$.

If γ is not constant and is T-periodic for some $T \neq 0$, then γ is said to be **closed.**

Notice that a T-periodic curve γ is determined by its restriction to any interval of length |T|. So, closed curves can be thought of as:

 $\gamma: [a, b] \to \mathbb{R}^n$ where $b - a = |\mathsf{T}|$ and $\gamma(b) = \gamma(a)$, as well as $\gamma^n(b) = \gamma^n(a)$.

Def. The **period** of a closed curve γ is the smallest positive number T such that γ is T-periodic.

Ex. $\gamma(t) = (\cos 4t, \sin 4t)$ is a closed curve (a circle of period $\frac{\pi}{2}$).

- Def. A curve (closed or not) is said to have a **self-intersection at a point**, p, on the curve if there exist parameter values $a \neq b$ such that:
 - i) $\gamma(a) = \gamma(b) = p$.
 - ii) If γ is closed with period T, then a b is not an integer multiple of T.

Ex. $\gamma(t) = (t^3 - t, t^2 - 1); \quad t \in \mathbb{R}$ has a self intersection point at $t = \pm 1$, but is not a closed curve since there is no T such that $\gamma(t + T) = \gamma(t)$ for all $t \in \mathbb{R}$.

Ex. The limacon given by:

$$\gamma(t) = ((1 + 2\cos t)\cos t, (1 + 2\cos t)\sin t); \ t \in \mathbb{R}$$

is a closed curve of period 2π and has a self-intersection point at (0,0).

