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The Gauss-Bonnet Theorem 

 

Intuitively, a triangulation of a surface is a network of a finite number of 

regular curve segments on a surface, such that any point on the surface lies on 

one of the curves or in a region bounded by precisely three curve segments. 

 

 

 

 

 

 

 

 

 

 

 

 

Def.   In a triangulation, a vertex is an endpoint of one of the curve segments on  

           the surface. The curve segments are called edges, and the enclosed regions   

          are called faces. 

 

Def.  In a triangulation, we define the Euler characteristic to be: 

𝜒(𝑆) = #(vertices) − #(edges) + #(faces) 

𝑃1  

𝑃2  

𝑃3  

𝑃4  

𝑃5  

𝑃6  

8  “Triangles” 
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 It turns out that the Euler characteristic of a surface is independent of how 

the triangulation is done. In addition, the Euler characteristic does not change if 

the surface is deformed continuously (no pinching or tearing of the surface). Thus, 

the Euler characteristic of a sphere and an ellipsoid are equal (they both equal 2).   

 

Ex.  Calculate the Euler characteristic of a sphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 By triangulating the sphere into 8 “triangles” by intersecting it with the 

            coordinate planes we get: 

𝜒(𝑆2) = #(vertices) − #(edges) + #(faces) 

                                       = 6 − 12 + 8 = 2. 
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The Classification Theorem of Surfaces:  Every compact (i.e. closed and  

 bounded) orientable surface without boundary is homeomorphic to a 

            sphere or an 𝑛-holed torus.  

 

 It can be shown that the Euler characteristic of a torus with 𝑔 holes (𝑔 is  

            called the genus of the surface), 𝑇𝑔, is given by: 

𝜒(𝑇𝑔) = 2 − 2𝑔. 

 
 

Gauss-Bonnet Theorem: Let 𝑆 be a compact surface without boundary. 

∬ Κ
𝑆

𝑑𝑆 = 2𝜋𝜒(𝑆)  

 where Κ is the Gauss curvature of 𝑆. 

 
 

Ex. Verify that the Gauss-Bonnet formula is true for 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 by  

      finding each side of the formula.  

 

Let Φ⃗⃗⃗ (𝑢, 𝑣) = (𝑅(cos 𝑣) sin 𝑢 , 𝑅(sin 𝑣) sin 𝑢 , 𝑅 cos 𝑢) 

where 0 ≤ 𝑢 ≤ 𝜋 and 0 ≤ 𝑣 ≤ 2𝜋.  

 

 We calculated earlier that the Gaussian curvature of a sphere was  

            a constant:            Κ =
1

𝑅2 .    

          To evaluate ∬ Κ
𝑆

𝑑𝑆 notice that  ∬ Κ
𝑆

𝑑𝑆 =
1

𝑅2 ∬ 𝑑𝑆
𝑆

.   
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      At this point, we can recognize that: 

          ∬ 𝑑𝑆
𝑆

= surface area of the sphere = 4𝜋𝑅2,  

 

       or we can say:  

∬ 𝑑𝑆
𝑆

= ∫ ∫ ‖Φ⃗⃗⃗ 𝑢 × Φ⃗⃗⃗ 𝑣‖
𝜋

𝑢=0

2𝜋

𝑣=0
𝑑𝑢𝑑𝑣 = ∫ ∫ 𝑅2 sin 𝑢

𝜋

𝑢=0

2𝜋

𝑣=0
𝑑𝑢𝑑𝑣 

                      = ∫ (−𝑅22𝜋

𝑣=0
cos 𝑢|

𝑢 = 𝜋
𝑢 = 0

 𝑑𝑣 = ∫ 2𝑅22𝜋

𝑣=0
𝑑𝑣 = 4𝜋𝑅2. 

 

 We saw that 𝜒(𝑆) = 2, regardless of the radius, thus: 

∬ Κ
𝑆

𝑑𝑆 =
1

𝑅2 (4𝜋𝑅2) = 4𝜋  and  𝜒(𝑆2) = 2  

                            So:             ∬ Κ
𝑆

𝑑𝑆 = 2𝜋𝜒(𝑆).   

 

What’s so remarkable about this theorem is that curvature is a geometric 

quantity. It depends on how one measures distances (i.e., it depends on the first 

fundamental form). However, 𝜒(𝑆) is a topological quantity, it doesn’t matter 

how you measure distance at all. For example, the Gaussian curvature of a sphere 

depends in its radius, however, whether the sphere has 𝑅 = 1 (i.e., Κ = 1) or 

𝑅 = 100 (i.e., Κ =
1

10,000
),   

1

2𝜋
∬ Κ

𝑆
𝑑𝑆 = 2. In fact, we would get the 

same result for any ellipsoid (which has non-constant Gaussian curvature). Any 

smooth surface that is homeomorphic to a sphere will have: 

1

2𝜋
∬ Κ

𝑆
𝑑𝑆 = 2.  

Since the Euler characteristic of a g-holed torus, 𝑇𝑔, is 2𝑔 − 2, then if 𝑆 is 

homeomorphic to a g-holed torus we would have:   
1

2𝜋
∬ Κ

𝑆
𝑑𝑆 = 2 − 2𝑔 . 


