
1 
 

                                  The Gauss Equations and the Codazzi-Mainardi Equations 
 

We have used the first fundamental form to measure the length of a curve 

and to find surface area. Then we used the first and second fundamental forms to 

measure different types of curvature of a surface (Gaussian, mean, normal, etc). It 

is natural to ask what the relationship is between components of the first 

fundamental form (𝐸, 𝐹, and 𝐺) and components of the second fundamental 

form (𝐿,𝑀, and 𝑁). We will find these relationships in the Gauss Equations and 

the Codazzi-Mainardi equations. 

 

Proposition (Gauss Equations 1): 

 Let Φ⃗⃗⃗ (𝑢, 𝑣) be a surface patch of a surface, 𝑆 ⊆ ℝ3, with first and 

 second fundamental forms: 

𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 and 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 

 Then:    

Φ⃗⃗⃗ 𝑢𝑢 = Γ11
1 Φ⃗⃗⃗ 𝑢 + Γ11

2 Φ⃗⃗⃗ 𝑣 + 𝐿�⃗⃗�  

  Φ⃗⃗⃗ 𝑢𝑣 = Γ12
1 Φ⃗⃗⃗ 𝑢 + Γ12

2 Φ⃗⃗⃗ 𝑣 + 𝑀�⃗⃗�  

   Φ⃗⃗⃗ 𝑣𝑣 = Γ22
1 Φ⃗⃗⃗ 𝑢 + Γ22

2 Φ⃗⃗⃗ 𝑣 + 𝑁�⃗⃗�  

  

        where: 

                     Γ11
1 =

𝐺𝐸𝑢−2𝐹𝐹𝑢+𝐹𝐸𝑣

2(𝐸𝐺−𝐹2)
                     Γ11

2 =
2𝐹𝐹𝑢−𝐸𝐸𝑣−𝐹𝐸𝑢

2(𝐸𝐺−𝐹2)
  

       Γ21
1 = Γ12

1 =
𝐺𝐸𝑣−𝐹𝐺𝑢

2(𝐸𝐺−𝐹2)
                   Γ21

2 = Γ12
2 =

𝐸𝐺𝑢−𝐹𝐸𝑣

2(𝐸𝐺−𝐹2)
  

                   Γ22
1 =

2𝐺𝐹𝑣−𝐺𝐺𝑢−𝐹𝐺𝑣

2(𝐸𝐺−𝐹2)
                      Γ22

2 =
𝐸𝐺𝑣−2𝐹𝐹𝑣+𝐹𝐺𝑢

2(𝐸𝐺−𝐹2)
 .  
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 The six coefficients of Φ⃗⃗⃗ 𝑢 and Φ⃗⃗⃗ 𝑣 in the formulas for Φ⃗⃗⃗ 𝑢𝑢, Φ⃗⃗⃗ 𝑢𝑣, and 

Φ⃗⃗⃗ 𝑣𝑣 are called Christoffel symbols (i.e., the Γjk
i 𝑠). Notice that the formulas for 

the Christoffel symbols, Γjk
i , depend only on the components of the first 

fundamental form and their partial derivatives. 
 

Proof:  Since Φ⃗⃗⃗ 𝑢, Φ⃗⃗⃗ 𝑣 and �⃗⃗�  are a basis for ℝ3, we can write Φ⃗⃗⃗ 𝑢𝑢, Φ⃗⃗⃗ 𝑢𝑣,       

and Φ⃗⃗⃗ 𝑣𝑣 in terms of Φ⃗⃗⃗ 𝑢, Φ⃗⃗⃗ 𝑣 and �⃗⃗� . 

Φ⃗⃗⃗ 𝑢𝑢 = 𝑎1Φ⃗⃗⃗ 𝑢 + 𝑏1Φ⃗⃗⃗ 𝑣 + 𝑐1�⃗⃗�  

Φ⃗⃗⃗ 𝑢𝑣 = 𝑎2Φ⃗⃗⃗ 𝑢 + 𝑏2Φ⃗⃗⃗ 𝑣 + 𝑐2�⃗⃗�   (∗)                  

   Φ⃗⃗⃗ 𝑣𝑣 = 𝑎3Φ⃗⃗⃗ 𝑢 + 𝑏3Φ⃗⃗⃗ 𝑣 + 𝑐3�⃗⃗�  
 

 Taking the dot product of each equation with �⃗⃗� , we get:  

𝐿 = Φ⃗⃗⃗ 𝑢𝑢 ∙ �⃗⃗� = (𝑎1Φ⃗⃗⃗ 𝑢 + 𝑏1Φ⃗⃗⃗ 𝑣 + 𝑐1�⃗⃗� ) ∙ �⃗⃗� = 𝑐1 

𝑀 = Φ⃗⃗⃗ 𝑢𝑣 ∙ �⃗⃗� = (𝑎2Φ⃗⃗⃗ 𝑢 + 𝑏2Φ⃗⃗⃗ 𝑣 + 𝑐2�⃗⃗� ) ∙ �⃗⃗� = 𝑐2 

𝑁 = Φ⃗⃗⃗ 𝑣𝑣 ∙ �⃗⃗� = (𝑎3Φ⃗⃗⃗ 𝑢 + 𝑏3Φ⃗⃗⃗ 𝑣 + 𝑐3�⃗⃗� ) ∙ �⃗⃗� = 𝑐3 
 

 If we take the three equations (∗) and dot them with Φ⃗⃗⃗ 𝑢 and Φ⃗⃗⃗ 𝑣 we get 

           six equations in the six unknowns: 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3. 

 For example: 

Φ⃗⃗⃗ 𝑢𝑢 ∙ Φ⃗⃗⃗ 𝑢 = (𝑎1Φ⃗⃗⃗ 𝑢 + 𝑏1Φ⃗⃗⃗ 𝑣 + 𝑐1�⃗⃗� ) ∙ Φ⃗⃗⃗ 𝑢 

                                              = 𝑎1(Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢) + 𝑏1(Φ⃗⃗⃗ 𝑣 ∙ Φ⃗⃗⃗ 𝑢) = 𝑎1𝐸 + 𝑏1𝐹. 

 But, 
𝜕

𝜕𝑢
(𝐸) =

𝜕

𝜕𝑢
(Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢) = 2Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢𝑢 or Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢𝑢 =

1

2
𝐸𝑢 

 So,                       
1

2
𝐸𝑢 = 𝑎1𝐸 + 𝑏1𝐹. 
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Solving these six simultaneous equations for 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 gives: 

𝑎1 = Γ11
1                𝑏1 = Γ11

2
 

𝑎2 = Γ12
1                𝑏2 = Γ12

2
 

 𝑎3 = Γ22
1                𝑏3 = Γ22

2 . 

 
 

Ex.  Let Φ⃗⃗⃗ (𝑢, 𝑣) = (𝑅 cos 𝑣 sin 𝑢, 𝑅 sin 𝑣 sin 𝑢 , 𝑅 cos 𝑢) be a 

         parametrization of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2. Find the 8  

         Christoffel symbols of Φ⃗⃗⃗  and write Φ⃗⃗⃗ 𝑢𝑢, Φ⃗⃗⃗ 𝑢𝑣, and Φ⃗⃗⃗ 𝑣𝑣 in terms of  

          Φ⃗⃗⃗ 𝑢, Φ⃗⃗⃗ 𝑣, and �⃗⃗� . 

 

 To calculate the Christoffel symbols we just need the components of the 

           first fundamental form of Φ⃗⃗⃗  (and their derivatives). To calculate the  

           components of Φ⃗⃗⃗ 𝑢𝑢, Φ⃗⃗⃗ 𝑢𝑣, and Φ⃗⃗⃗ 𝑣𝑣 in terms of Φ⃗⃗⃗ 𝑢, Φ⃗⃗⃗ 𝑣, and �⃗⃗�  we need 

           the components of the second fundamental form.   

 

          Recall that for the sphere of radius 𝑅, the first fundamental form is: 

(𝑅
2 0

0 𝑅2 sin2 𝑢
) ;    𝐸 = 𝑅2, 𝐹 = 0, 𝐺 = 𝑅2 sin2 𝑢.  

 

The second fundamental form: 

       (
−𝑅 0
0 −𝑅 sin2 𝑢

) ;   𝐿 = −𝑅,          𝑀 = 0,         𝑁 = −𝑅 sin2 𝑢.  
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 Using the formulas for Γjk
i in the Gauss equations we get: 

Γ11
1 =

𝐺𝐸𝑢−2𝐹𝐹𝑢+𝐹𝐸𝑣

2(𝐸𝐺−𝐹2)
= 0            

 

Γ11
2 =

2𝐹𝐹𝑢−𝐸𝐸𝑣−𝐹𝐸𝑢

2(𝐸𝐺−𝐹2)
= 0   

 

Γ21
1 = Γ12

1 =
𝐺𝐸𝑣−𝐹𝐺𝑢

2(𝐸𝐺−𝐹2)
= 0   

 

 Γ21
2 = Γ12

2 =
𝐸𝐺𝑢−𝐹𝐸𝑣

2(𝐸𝐺−𝐹2)
=

𝑅2(2𝑅2 sin𝑢 cos𝑢)

2𝑅4 sin2 𝑢
= cot 𝑢   

 

  Γ22
1 =

2𝐺𝐹𝑣−𝐺𝐺𝑢−𝐹𝐺𝑣

2(𝐸𝐺−𝐹2)
=

−𝑅2 sin2 𝑢(2𝑅2 sin𝑢 cos𝑢)

2𝑅4 sin2 𝑢
= −sin 𝑢 (cos 𝑢)   

 

   Γ22
2 =

𝐸𝐺𝑣−2𝐹𝐹𝑣+𝐹𝐺𝑢

2(𝐸𝐺−𝐹2)
= 0.   

 

 

So, now we can write: 

  Φ⃗⃗⃗ 𝑢𝑢 = Γ11
1 Φ⃗⃗⃗ 𝑢 + Γ11

2 Φ⃗⃗⃗ 𝑣 + 𝐿�⃗⃗� = −𝑅�⃗⃗�   

 

   Φ⃗⃗⃗ 𝑢𝑣 = Γ12
1 Φ⃗⃗⃗ 𝑢 + Γ12

2 Φ⃗⃗⃗ 𝑣 + 𝑀�⃗⃗� = (cot 𝑢)Φ⃗⃗⃗ 𝑣   

 

Φ⃗⃗⃗ 𝑣𝑣 = Γ22
1 Φ⃗⃗⃗ 𝑢 + Γ22

2 Φ⃗⃗⃗ 𝑣 + 𝑁�⃗⃗� = −(sin 𝑢)(cos 𝑢)Φ⃗⃗⃗ 𝑢 − (𝑅 sin2 𝑢)�⃗⃗� . 
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Proposition (Codazzi-Mainardi Equations): 

Let 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 and 𝐿𝑑𝑢2 + 2𝑀𝑑𝑢𝑑𝑣 + 𝑁𝑑𝑣2 be  

the first and second fundamental forms of a surface patch, Φ⃗⃗⃗ (𝑢, 𝑣). Then:      

𝐿𝑣 − 𝑀𝑢 = 𝐿(Γ12
1 ) + 𝑀(Γ12

2 − Γ11
1 ) − 𝑁(Γ11

2 ) 
 

𝑀𝑣 − 𝑁𝑢 = 𝐿(Γ22
1 ) + 𝑀(Γ22

2 − Γ12
1 ) − 𝑁(Γ12

2 ). 

 

Proposition (Gauss Equations 2):   

If Κ is the Gaussian curvature of a surface patch, Φ⃗⃗⃗ (𝑢, 𝑣), then: 

𝐸Κ = (Γ11
2 )𝑣 − (Γ12

2 )𝑢 + Γ11
1 Γ12

2 + Γ11
2 Γ22

2 − Γ12
1 Γ11

2 − (Γ12
2 )2 

 

            𝐹Κ = (Γ12
1 )𝑢 − (Γ11

1 )𝑣 + Γ12
2 Γ12

1 − Γ11
2 Γ22

1  
 

            𝐹Κ = (Γ12
2 )𝑣 − (Γ22

2 )𝑢 + Γ12
1 Γ12

2 − Γ22
1 Γ11

2  
 

            𝐺Κ = (Γ22
1 )𝑢 − (Γ12

1 )𝑣 + Γ22
1 Γ11

1 + Γ22
2 Γ12

1 − (Γ12
1 )2 − Γ12

2 Γ22
1 .  

 

Proof of Codazzi-Mainardi Equations and Gauss Equations 2: 

 From the first set of Gauss equations we know, 

     Φ⃗⃗⃗ 𝑢𝑢 = Γ11
1 Φ⃗⃗⃗ 𝑢 + Γ11

2 Φ⃗⃗⃗ 𝑣 + 𝐿�⃗⃗� .   

 

 Differentiate both sides with respect to 𝑣: 
 

(Φ⃗⃗⃗ 𝑢𝑢)𝑣
= Γ11

1 Φ⃗⃗⃗ 𝑢𝑣 + (Γ11
1 )𝑣 Φ⃗⃗⃗ 𝑢 + Γ11

2 Φ⃗⃗⃗ 𝑣𝑣 + (Γ11
2 )𝑣Φ⃗⃗⃗ 𝑣 + 𝐿(�⃗⃗� 𝑣) + 𝐿𝑣(�⃗⃗� ). 
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 Similarly, we know from the first set of Gauss equations: 

       Φ⃗⃗⃗ 𝑢𝑣 = Γ12
1 Φ⃗⃗⃗ 𝑢 + Γ12

2 Φ⃗⃗⃗ 𝑣 + 𝑀�⃗⃗� .   

 

Differentiate both sides with respect to 𝑢: 

  (Φ⃗⃗⃗ 𝑢𝑣)𝑢
= Γ12

1 Φ⃗⃗⃗ 𝑢𝑢 + (Γ12
1 )𝑢Φ⃗⃗⃗ 𝑢 + Γ12

2 Φ⃗⃗⃗ 𝑣𝑢 + (Γ12
2 )𝑢Φ⃗⃗⃗ 𝑣 + 𝑀�⃗⃗� 𝑢 + 𝑀𝑢�⃗⃗� .  

 

 

 Since (Φ⃗⃗⃗ 𝑢𝑢)𝑣
= (Φ⃗⃗⃗ 𝑢𝑣)𝑢

 we have:  

Γ11
1 Φ⃗⃗⃗ 𝑢𝑣 + (Γ11

1 )𝑣Φ⃗⃗⃗ 𝑢 + Γ11
2 Φ⃗⃗⃗ 𝑣𝑣 + (Γ11

2 )𝑣Φ⃗⃗⃗ 𝑣 + 𝐿(�⃗⃗� 𝑣) + 𝐿𝑣(�⃗⃗� ) 

 = Γ12
1 Φ⃗⃗⃗ 𝑢𝑢 + (Γ12

1 )𝑢Φ⃗⃗⃗ 𝑢 + Γ12
2 Φ⃗⃗⃗ 𝑣𝑢 + (Γ12

2 )𝑢Φ⃗⃗⃗ 𝑣 + 𝑀�⃗⃗� 𝑢 + 𝑀𝑢�⃗⃗� .  

 

 

Collecting the Φ⃗⃗⃗ 𝑢, Φ⃗⃗⃗ 𝑣, and �⃗⃗�  terms on one side: 

((Γ11
1 )𝑣 − (Γ12

1 )𝑢)Φ⃗⃗⃗ 𝑢 + ((Γ11
2 )𝑣 − (Γ12

2 )𝑢)Φ⃗⃗⃗ 𝑣 + (𝐿𝑣 − 𝑀𝑢)�⃗⃗�  

= Γ12
1 Φ⃗⃗⃗ 𝑢𝑢 + (Γ12

2 − Γ11
1 )Φ⃗⃗⃗ 𝑢𝑣 − Γ11

2 Φ⃗⃗⃗ 𝑣𝑣 − 𝐿�⃗⃗� 𝑣 + 𝑀�⃗⃗� 𝑢. 

 

 We can now use the Gauss Equations 1 again on the RHS: 

= Γ12
1 (Γ11

1 Φ⃗⃗⃗ 𝑢 + Γ11
2 Φ⃗⃗⃗ 𝑣 + 𝐿�⃗⃗� ) + (Γ12

2 − Γ11
1 )(Γ12

1 Φ⃗⃗⃗ 𝑢 + Γ12
2 Φ⃗⃗⃗ 𝑣 + 𝑀�⃗⃗� )

− Γ11
2 (Γ22

1 Φ⃗⃗⃗ 𝑢 + Γ22
2 Φ⃗⃗⃗ 𝑣 + 𝑁�⃗⃗� ) − 𝐿�⃗⃗� 𝑣 + 𝑀�⃗⃗� 𝑢.         (∗∗) 

 

Since �⃗⃗� ∙ �⃗⃗� = 1, we know �⃗⃗� ∙ �⃗⃗� 𝑢 = 0 and �⃗⃗� ∙ �⃗⃗� 𝑣 = 0, so that �⃗⃗� 𝑢 and �⃗⃗� 𝑣 

are perpendicular to �⃗⃗� . Equating the �⃗⃗�  components on both sides, we get: 

𝐿𝑣 − 𝑀𝑢 = 𝐿Γ12
1 + 𝑀(Γ12

2 − Γ11
1 ) − 𝑁Γ11

2  

 This is the first Codazzi-Mainardi Equation. 
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 The other Codazzi-Mainardi Equation comes from equating coefficients  

            of �⃗⃗�  in the equation: (Φ⃗⃗⃗ 𝑢𝑣)𝑣
= (Φ⃗⃗⃗ 𝑣𝑣)𝑢

. 

 

To get the 2nd Gauss Equations, recall that if: 

𝑊(Φ⃗⃗⃗ 𝑢) = (
𝑎 𝑐
𝑏 𝑑

) (
1
0
) = 𝑎Φ⃗⃗⃗ 𝑢 + 𝑏Φ⃗⃗⃗ 𝑣 = −�⃗⃗� 𝑢 

𝑊(Φ⃗⃗⃗ 𝑣) = (
𝑎 𝑐
𝑏 𝑑

) (
0
1
) = 𝑐Φ⃗⃗⃗ 𝑢 + 𝑑Φ⃗⃗⃗ 𝑣 = −�⃗⃗� 𝑣 

Then: 

(
𝑎 𝑐
𝑏 𝑑

) =
1

𝐸𝐺−𝐹2 (
𝐺 −𝐹
−𝐹 𝐸

) (
𝐿 𝑀
𝑀 𝑁

).    

 

So we can replace �⃗⃗� 𝑢 and �⃗⃗� 𝑣 with vectors in terms of Φ⃗⃗⃗ 𝑢 and Φ⃗⃗⃗ 𝑣 in equation 

(∗∗). If we then equate the coefficients of Φ⃗⃗⃗ 𝑢 we get: 

𝐹Κ = (Γ12
1 )𝑢 − (Γ11

1 )𝑣 + Γ12
2 Γ12

1 − Γ11
2 Γ22

1  

 

The other Gauss 2 Equations are gotten from equating the coefficients of Φ⃗⃗⃗ 𝑣 in 

(Φ⃗⃗⃗ 𝑢𝑢)𝑣
= (Φ⃗⃗⃗ 𝑢𝑣)𝑢

 and of Φ⃗⃗⃗ 𝑢 and Φ⃗⃗⃗ 𝑣 in (Φ⃗⃗⃗ 𝑢𝑣)𝑣
= (Φ⃗⃗⃗ 𝑣𝑣)𝑢

. 

 

 
 

Cor: (Gauss’ Theorema Egregium) The Gaussian curvature of a surface is an  

        intrinsic property of the surface, that is, it only depends on the components 

        𝐸, 𝐹, and 𝐺 of the first fundamental form (i.e. the metric tensor) and its  

        higher derivatives. 
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       This means that someone living on the surface could measure the Gaussian 

        curvature of the surface (you don’t actually need the components of the  

         unit normal and its derivatives). 

 

Since the Christoffer symbols, Γjk
i , are defined in terms of the components of the 

first fundamental form and their derivatives, we can use the second set of Gauss 

equations to find the Gaussian curvature directly from the components of the first 

fundamental form. This turns out to be the following messy expression: 

 

Κ = 

|
|

−
1

2
𝐸𝑣𝑣+𝐹𝑢𝑣−

1

2
𝐺𝑢𝑢

1

2
𝐸𝑢 𝐹𝑢−

1

2
𝐸𝑣

𝐹𝑣−
1

2
𝐺𝑢 𝐸 𝐹

1

2
𝐺𝑣 𝐹 𝐺

|
|−|

|

0
1

2
𝐸𝑣

1

2
𝐺𝑢

1

2
𝐸𝑣 𝐸 𝐹

1

2
𝐺𝑢 𝐹 𝐺

|
|

(𝐸𝐺−𝐹2)2
  .    (∗∗∗) 

 
 

 However, if 𝐹 = 0, we have: 

Κ = − 
1

2√𝐸𝐺
[

𝜕

𝜕𝑢
(

𝐺𝑢

√𝐸𝐺
) +

𝜕

𝜕𝑣
(

𝐸𝑣

√𝐸𝐺
)].   

 
 

 And if 𝐹 = 0 and 𝐸 = 1, we have: 

Κ = − 
1

√𝐺

𝜕2√𝐺

𝜕𝑢2  . 
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Ex.   Calculate the Gaussian curvature, Κ, if the first fundamental form is 

(1 + 𝑣2)𝑑𝑢2 + (2𝑢𝑣)𝑑𝑢𝑑𝑣 + (1 + 𝑢2)𝑑𝑣2. 

 
 

 It’s messy, but we just need to plug into (∗∗∗), where: 

𝐸 = 1 + 𝑣2,         𝐸𝑢 = 0,         𝐸𝑣 = 2𝑣,         𝐸𝑣𝑣 = 2 

                  𝐹 = 𝑢𝑣,                 𝐹𝑢 = 𝑣,          𝐹𝑣 = 𝑢,            𝐹𝑢𝑣 = 1 

                  𝐺 = 1 + 𝑢2,         𝐺𝑢 = 2𝑢,       𝐺𝑣 = 0,            𝐺𝑢𝑢 = 2. 

 

 Κ =  

|
−1 0 0
0 1+𝑣2 𝑢𝑣
0 𝑢𝑣 1+𝑢2

|−|
0 𝑣 𝑢
𝑣 1+𝑣2 𝑢𝑣
𝑢 𝑢𝑣 1+𝑢2

|

((1+𝑢2)(1+𝑣2)−𝑢2𝑣2)2
  

 

Κ =
−[(1 + 𝑣2)(1 + 𝑢2) − 𝑢2𝑣2] − [−𝑣(𝑣(1 + 𝑢2) − 𝑢2𝑣) + 𝑢(𝑢𝑣2 − 𝑢(1 + 𝑣2))]

(1 + 𝑢2 + 𝑣2)2
 

 

 Κ = 
−1

(1+𝑢2+𝑣2)2
 .  

 

The Fundamental Theorem of Surface Theory:   

If 𝐸, 𝐹, 𝐺 and 𝐿,𝑀,𝑁 are smooth functions of (𝑢, 𝑣) that satisfy the 

Codazzi-Mainardi and Gauss 2 equations and 𝐸𝐺 − 𝐹2 > 0, then there exists a 

parametrization, Φ⃗⃗⃗ (𝑢, 𝑣), of a regular orientable surface such that the first 

fundamental form of Φ⃗⃗⃗  is (
𝐸 𝐹
𝐹 𝐺

) and the second fundamental form of Φ⃗⃗⃗  is 

(
𝐿 𝑀
𝑀 𝑁

). Furthermore, this surface is uniquely determined up to rotation and 

translation in ℝ3. 
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     By Gauss’ theorema egregium, if 𝐹1 = �̅�1, where 𝐹1, �̅�1 are first fundamental 

forms of surface patches on two different surfaces, then the Gauss curvatures at 

every point in the surface patches must be equal, i.e., Κ = Κ̅.  However, the 

converse is not true.  You can have two surfaces where the Gaussian curvatures 

are equal at every point, but the first fundamental forms are not, i.e., Κ = Κ̅ but 

𝐹1 ≠ �̅�1 (see HW problem). 

     Suppose two surfaces have equal first fundamental forms at every point does 

that mean the the second fundamental forms must also be equal?  The answer is 

no.  For example, the standard parametrizations of a cylinder in ℝ3 given by     

𝑥2 + 𝑦2 = 1 and the standard parametrization of the 𝑥-𝑦 plane hve the same 

first fundamental forms but different second fundamental forms.  

 

Ex.  Show there is no surface patch whose first and second fundamental forms 

       are: 

            𝐹1 = (
1 0
0 cos2 𝑢

)        i.e.,      𝑑𝑢2 + (cos2 𝑢) 𝑑𝑣2  

 

             𝐹2 = (cos
2 𝑢 0

0 1
)        i.e.,      (cos2 𝑢)𝑑𝑢2 + 𝑑𝑣2. 

 

By the fundamental theorem of surface theory, 𝐸, 𝐹, 𝐺 and 𝐿,𝑀,𝑁 must  

satisfy the Codazzi-Mainardi and Gauss 2 equations. 

The Codazzi-Mainardi equations say: 

𝐿𝑣 − 𝑀𝑢 = 𝐿(Γ12
1 ) + 𝑀(Γ12

2 − Γ11
1 ) − 𝑁(Γ11

2 ) 
 

               𝑀𝑣 − 𝑁𝑢 = 𝐿(Γ22
1 ) + 𝑀(Γ22

2 − Γ12
1 ) − 𝑁(Γ12

2 ). 
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We can calculate the Christoffel symbols, Γjk
i , from the components of the 

first fundamental form, 𝐸, 𝐹, and 𝐺: 

𝐸 = 1, 𝐹 = 0, 𝐺 = cos2 𝑢. 

 

For example:   Γ11
1 =

𝐺𝐸𝑢−2𝐹𝐹𝑢+𝐹𝐸𝑣

2(𝐸𝐺−𝐹2)
=

(cos2 𝑢)(0)−2(0)(0)+0(0)

2(cos2 𝑢−0)
= 0.   

 

In fact, the only non-zero Christoffel symbol is:  

Γ22
1 =

2𝐺𝐹𝑣−𝐺𝐺𝑢−𝐹𝐺𝑣

2(𝐸𝐺−𝐹2)
=

−(cos2 𝑢)(−2cos𝑢 sin𝑢)

2 cos2 𝑢
= (cos 𝑢) sin 𝑢.   

 

The second Codazzi-Mainardi equation is not satisfied because given  

𝐿 = cos2 𝑢 , 𝑀 = 0, 𝑁 = 1  ⟹  𝑀𝑣 − 𝑁𝑢 = 0, but: 

𝐿(Γ22
1 ) + 𝑀(Γ22

2 − Γ12
1 ) − 𝑁(Γ12

2 ) = (cos2 𝑢)(cos 𝑢)(sin 𝑢) ≠ 0. 

 

Thus, there is no surface with those first and second fundamental forms.  


