Principal Curvatures of a Surface

A linear transformation, P: V' — V, is called self adjoint if
< PV_V>1,V_V>2 >=<W1,PW2 >

where <, > is an inner product of vectors. In the case of the Weingarten map,
P=W= —Dpa, and vectors W; = (a4, b;) and w, = (a,, b,). Let’s show
that W is self adjoint.

Let W, W, € T,S and write:

since W(au) = —]Vu, W(a))v) = —]Vv

- —

Now using the identity: N, - ®,, = $u : ﬁv we get

< WW]_,WZ > = (ala))u + b16v) ) (_azﬁu - bzﬁv)
=< Wl;W(WZ) >

So W is self adjoint.



There is a theorem from linear algebra that says thatif P: V — V is a self
adjoint linear map of I/, a two (or n) dimensional vector space into itself, then
there exists an orthonormal basis €; and €, of V such that P(e;) = 1€, and

P(é,) = A,€, (thatis, €; and &, are eigenvectors and A4, A, are eigenvalues
of P).

In the case of the Weingarten map: W:T,S — TS, there are

orthonormal tangent vectors to S, £y, t, € T,S such that:
W(tl) == Kltl
W(tz) = Kztz.

Then with respect to the basis vectors fl and 52, the matrix W is given by:
kK, O
W = ( ! )
0 kK,

If K1 = Ky, = K, then:

K

W=(0

2) (i.e. a multiple of the identity matrix).

Def. K1, K, are called the principal curvatures of S and El, Ez are called

principal vectors corresponding to K1, K.

Def. If ki = K, forp € S, we say p is an umbilic point of S.



Prop. If K1 and K, are the principal curvatures of p € S, then the mean

and Gaussian curvatures are given by:

H = %(K1 +K3), K= (k1)(K).

Proof: The determinant and trace of a linear transformation do not change when
the basis is changed. Thus, using the principal vectors as a basis, the

Weingarten map is represented by:
(5 )
0 Ky)

Hence:
K = det(W) = (kq)(x;,) and

1 1
H = Etrace(W) =3 (K1 + Ky).
One application of principal curvatures and principal vectors is given by:

Theorem (Euler’s Theorem): Let ¥ be a curve on an oriented surface, S,

and let K4, K, be the principal curvatures of @, with non-zero principal vectors,

El and Ez. Then the normal curvature of y is:
— 2 )
K, = K1 €C0S“ 0 + Kk, sin“ 0

where 6 is the angle between t; and y'(t).



Proof: Let 1_5)1 and 1?2 be an orthonormal basis for T,,S with W(fl) = K, El

and W(EZ) = Kzzz- We can take y to be unit speed since curvatures are
independent of the parametrization, so we can write:

! — At Z .
z“ () = af, + b, v'(s) =at; + bt,; where
i cosd =——=aq
lly" ()l
b sind =——=bh; so
Iy’ ()l ’ ’
o S T ¥'(s) = (cos 0)t; + (sin 0)¢,.
1

We saw earlier that:
kn =<W(y'(s)),y'(s) >
=<W ((cos 6)t; + (sin 0)1?2) ,(cos 8)t; + (sin )¢, >
= < (cos Q)W(fl) + (sin Q)W(fz), (cos )¢, + (sinO)t, >

= < (cos B)k; (El) + (sin 0)k, (Ez), (cos 0)t; + (sin 8)t, >

Kk, = (cos? @)k, + (sin? O)k,.



Cor: The principal curvatures at a point on a surface are the maximum and
minimum values of the normal curvature of all curves on the surface passing

through the point. Moreover, the principal vectors are the tangent vectors of the
curves giving these maximum and minimum values.

Proof: If K; # K, assume K1 > K5, then we can write:

K, = K, C0s% 0 + Kk, sin? 0
= k,(1 — sin? @) + K, sin* O

K, = k; — (k; — k) sin? 6.

Thus, K, < K1 since k; — K5 > 0 and sin? 8 > 0.

In addition, k,, = K, if, andonlyif, 8 = 0 or 7, i.e., ¥'(s) is parallel
to El'

Similarly, we know:

K, = k1 0% 0 + Kk,(1 — cos?0) =k, + (k; — k) cos? 0

3
Thus, K,, = K, with equality if, and only if, 8 = gor f i.e, vV (s)is

parallel to Ez-

If Ky = Ky, then k,, = Kkq c0S% 8 + Kk sin? @ = Kk, and every unit
tangent vector to the surface is a principal vector since every unit vector is
an eigenvector:

(5 ) () =m()



Cor. The mean curvature, H, is the average value of the normal curvature over

0<6<2m.
1 (6=2 1 (0=2 .
Proof:  — fp_ ¢ "k,d6 = — oo "[(cos? 0)k, + (sin? )k,]d6

1 2 2w

= —[K fefo cos® 0d0 + k; fefo sin? 6d0]
1 2m (11 2m (1 1

= [ Joo (E + ECOSZH) df +x; [,_, (E — ECOSZ@) do]
1 1

= E[’Q(TC) +1p(m)] = E[Kl +K,] = H.

Recall from linear algebra, if P is a linear transformation of a vector space
V into V, then W € V is an eigenvector of P if P(W) = AW. In this case, A is

called the eigenvalue of P. This is equivalent to saying:

(P — ADW = 0.

To find the eigenvalues we solve the equation:

det(P — Al) = 0 for A.

To find the eigenvectors, W, we let W = aw; + bw,; where w; and W,

are basis vectors for I/ and solve for a, b in:

=)=



Given a surface patch @ (u, v) for a surface, S, how do we calculate k4

and K, the principal curvatures?

K1 and K, are the eigenvalues of W, the Weingarten map, and we already
saw that:

W = (F{)(F)

where F; and F, are the matrix representations of the first and second

fundamental forms with respect to the basis 5u and 61,.
Thus we need to solve: det(F; 1F, — kI) = 0 for k.

Notice that: det(F{1F, — kI) = det(F{ 1(F, — kF}))
= det(F; 1) det(F, — kF;) = 0.

since det(F{ 1) # 0, this is equivalent to solving: det(F, — kF;) = 0.

We can find the principal curvature vectors, 1?1 and EZ, which are the

eigenvectors of W = F1_1F2 by letting t = a@u + b@v and solving:

s ()= (0)

This is the equivalent to solving:

e (§) = )

or

e ()= 0)



Recall that with respect to the basis of T),S given by E’u and 31,, we have:

F, = (g g) and F, = (I\Z 1\1\/][)

where E, F,G,L, M, N are defined as before.

Proposition: The principal curvatures are the roots of:

|L—KE M — kF _
M —-—xkF N —kG

and the principal curvature vectors to the principal curvature, K, are the

0

unit tangent vectors, t = a®,, + b®,, such that:

(e v ee) ()= (0)

Ex. Find the principal curvatures and principal curvature vectors for the sphere of

radius, R.

We saw earlier that for the parametrization of S? by:

5((/5, 8) = (Rcos @ sin ¢, Rsin 6 sin ¢p, Rcos ¢)
We have:

o _(RZ 0 )
17\ 0 RZ?sin?¢

and

—R 0
b2 = ( 0 —Rsinqu)'



That is:
E = R?, F=0, G = R?sin? ¢,
L = —R, M =0, N=—RSin2q§.

Thus, to find the eigenvalues of W we solve det(F, — kF;) = O:

|—R — KkR? 0 ‘ ~ 0
0 —Rsin? ¢ — kR?sin? ¢|

‘—R(l + kR) 0 ‘ —0
0 —R (sin? ) (1 + kR)|

R?sin? ¢ (1 +kR)?> = 0.

1

K= e double root so:
Ki = Ky = !
1= K2 = 7%

Since K1 = K, every unitvector t € TpS is a principal curvature vector

(for all points p € S). Hence, every point of S is an umbilic point.
Note: K1, K, depend on which direction we choose for IV, the unit
normal to S. If we had chosen —IV for S? we would have gotten:

. _1
Kl_KZ_E'



10

Ex. Find the principal curvatures and principal curvature vectors for the helicoid

given by:

Eﬁ(u,v) = (vcosu,vsinu,2u); 0<v<3,u€eR

E))u = (—vsinu,vcosu,2)

E))v = (cosu,sinu,0)

O, XD, =|—psinu vcosu 2
cosu sinu 0

= —2sinul+ 2cosuj— vk

||$u><$v|| =\/4Sin2u+4coszu+v2 = /4 + p2

ﬁ _ 5u><5v — (—2sinu,2 cos u,—v)
[ #uxa Jaro?

— — . . 5
=¢, P, =(—vsinu,vcosu,2)  (—vsinu,vcosu,2) =v°+4
_>v = (—vsinu,vcosu,2) - (cosu,sinu,0) =0

» = (cosu,sinu,0) - (cosu,sinu,0) = 1.



5% = (—vcosu,—vsinu,0)

- "
®,, = (—sinu,cosu,0)

®,, = (0,0,0)
= = o (=2sinu,2cosu,—v) _
L=®d,,-N=(—vcosu,—vsinu,0) Now =0
- (=2sinu,2cosu,—v) 2
M=®,, N =(—sinu,cosu,0) Nowews = Tz
- (=2sinu,2cosu,—v)
N=d,,-N=(0,0,0) Nowe = 0.
So we have:
0 2
2 (4112
Flz(v + 4 0) and F, = 4+v% |
0 1 2 0
Va+v2

So to find the principal curvatures we must solve det(F, — kF;) = O:

2
—k(W* +4) =
2 e =0
Varo?
4
kZ2(v? +4) — ke
2 ___ 4
(4+v2)?

11



To find £; and £, we solve (F, — kF;) (a) = (0):

b 0
2 S — —
= gz 0= d, + b,
(= Vo) (=)
=2 vﬁ ay (0
. G) =)
Va+v? 4+v?

2

_ _ _ 2
2a+mb 0 = b=av4 + v-.

So any vector of the form (a, av4 + vz) will get mapped to (0,0).
We want a unit vector so we must find a such that:

1=t -t =a(l,V4+v2)-a(l,V4 + v?)
= a2(D, + VA + 12 D,) - (D, + V4 + v2 D)
= a?(E + 2V4 + v2F + (4 + v?)6)
=a’(4 +v*+4+v?) = 2a%(4 + v?).

Solving for a we get:

1
+
— \2V4+v?2

Thus 1_5)1 can be either:

a =

t, = im(l,v4+v2).

12



2
Similarly, if Kk = ———=, then we solve:

44v2’
2
- )o-0
Va+vZ  4+v2

2 _ _ 2
2a+mb—0 = b =—av4 + v-.

So any vector of the form (a, —av4 + vz) will get mapped to (0,0).

Again we want to find an a so that this is a unit vector.

1=t, t, = a(l,—V4 +v2)-a(l,—V4 + v?)
= a?(®, — V4 + v2D,) - (P, — V4 + v2D,)
= a?(E — 2V4 + v2F + (4 + v?)6)
=a’(4+v*+4+v?) =2a%4 +v?).

Solving for a we get:

a=+= 1

V2V 4402

Thus 1_5)2 can be either:

P41 q_ 2
tz—iﬁm(l, V4 + v2).

13



14

Notice that El and Ez are perpendicular to eachother since if we take

V4 + 172) and t, = \/7\/% (1, —V4 + 172) for example:

-

1
t1 =——=I(1,
LT 2 a2 (

. 1 (1_ 2
£ -ty = m(lVﬁHv) = (L V4 +7)

(@, +Va+12D) (P, — V4 +v2D,)

- 2(4+ 2(4+12)

2(4+vz)(c1> Dy — (4 + 12D, D)

= m(E — (4 + UZ)G)

2(4+ 2417 (4+v)—(4+v?))=0.

2 2
Now since K; = 02 and K, = — T2 the Gauss curvature is:
2 2 4
K= 4+12 (_ 4+v2) T (4+v2)2 <0

And the mean curvature is:
1
H=E(K1+K2)=O

A surface with mean curvature equal to zero everywhere is called a minimal
surface. Given a boundary curve, ¥, a minimal surface, S, is a surface that has the

smallest area among all surfaces with boundry curve y. The helicoid is an example
of a minimal surface.
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Ex. A corollary to Euler’s theorem says the principal curvatures are the maximum
and minimum normal curvature of all curves through a given point on a surface.
Show by direct calculation that this is true for the surface in the previous example.

Since any two curves through a point on a surface with parallel velocity vectors
have the same normal curvature, we only need to calculate the maximum and
minimum normal curvatures of curves of the form:

u(t) =uy +t

v(it) =vo+at; a€R
and the vertical line u(t) = uy, v(t) = vy +t,
where y(t) = ®(u(t), v(t)).

So: u'(t) =1 and v'(t) = a (except for the vertical line).

From the previous example we know that:

E=®, - &, =v%+4 L=®,,-N=0

— — — — 2
F=0, -, = M=, N=7—
G=0, P,=1 N=3&,,-N=0.

Plugging in to the formula for normal curvature at CD(uo, vo) we get:

4

du? du\/dv dv 2

_ L(%) +2M(E)(E)+N(E) IRERLC
Kn _— —

du\? du\ /dv dv\2 V2+4+a?
i == hatd 0
E(gr) +2F(50)(50)+6 ()
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Now find the max/min of K, over all @ € R and the vertical line u(t) = uy,
v(t) = vy +t.

Through direct calculation we find that:

v0+4 a?
Kn(@) =
/4+v0 v0+4+a2

By checking the sign of k, (@) as we go through the points @ = +/v§ + 4 we

see that K,, () has a local minimum at @ = — / v§ + 4 and a local maximum at

= /v%+4.

Since lim Kk,(a) = 0, the local maximum and minimum are global maxima and

a—>+oo
2
K ( v2+4)— 4 R
n\— 0 -
[4+02 \ v3+4+(— [v2+4)2

2
vE+4

=0 = a=zt.vf+4

minima.

’ 2
K ( v2+4)— ki A
n 0 -
[4+v3 \ v3+4+( v3+4)?

2
vE+4

For the vertical line u(t) = ugy, v(t) = vy + t, we find k,, = 0, so the
absolute maximum and minimum of the normal curvature occurs at the principal
curvatures.



Ex. Given the Gauss curvature, K, and the mean curvature, H, find the principal
curvatures.

H=Z0q+1) (%)
K = Kk1k; (*%)

Now solve these equations simultaneously to find k; and k5.

K
From (%), K, = —.
1

From (%), 2H = (k; + k) = K1 + KE
1

2Hk, = k¥ +K
0 =k? — 2Hk, + K.

Now using the quadratic formula:

+V4HZ—4K —
K1=2H_ 42H 4 _ H+VIE=K,

So we have:
K]_: H+ VHZ—K
Ky, = H—-+VH? — K.

4

In the previous examplewe had: H =0, K= — (@+v2)?

2
K1=0+\/0+ 4 ==

(4+v2)2 44p2

4 -2
Hy = 0= \/0 + (4+v2)2  44p2°
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