
1 
 

  Principal Curvatures of a Surface 

 

A linear transformation, 𝑃: 𝑉 → 𝑉, is called self adjoint if 

< 𝑃�⃗⃗� 1, �⃗⃗� 2 > = < �⃗⃗� 1, 𝑃�⃗⃗� 2 > 

where < ,> is an inner product of vectors. In the case of the Weingarten map, 

𝑃 = 𝑊 = −𝐷𝑝�̃�, and vectors �⃗⃗� 1 = (𝑎1, 𝑏1) and �⃗⃗� 2 = (𝑎2, 𝑏2).  Let’s show 

that 𝑊 is self adjoint.  

 

Let �⃗⃗� 1, �⃗⃗� 2 ∈ 𝑇𝑝𝑆 and write: 

�⃗⃗� 1 = 𝑎1Φ⃗⃗⃗ 𝑢 + 𝑏1Φ⃗⃗⃗ 𝑣 

                                               �⃗⃗� 2 = 𝑎2Φ⃗⃗⃗ 𝑢 + 𝑏2Φ⃗⃗⃗ 𝑣. 

 Then: 

< 𝑊�⃗⃗� 1, �⃗⃗� 2 > = (𝑊(𝑎1Φ⃗⃗⃗ 𝑢 + 𝑏1Φ⃗⃗⃗ 𝑣)) ∙ (𝑎2Φ⃗⃗⃗ 𝑢 + 𝑏2Φ⃗⃗⃗ 𝑣) 

    = (−𝑎1�⃗⃗� 𝑢 − 𝑏1�⃗⃗� 𝑣) ∙ (𝑎2Φ⃗⃗⃗ 𝑢 + 𝑏2Φ⃗⃗⃗ 𝑣) 

 

 since 𝑊(Φ⃗⃗⃗ 𝑢) = −�⃗⃗� 𝑢, 𝑊(Φ⃗⃗⃗ 𝑣) = −�⃗⃗� 𝑣.  

          Now using the identity:  �⃗⃗� 𝑢 ∙ Φ⃗⃗⃗ 𝑣 = Φ⃗⃗⃗ 𝑢 ∙ �⃗⃗� 𝑣  we get 

 

< 𝑊�⃗⃗� 1, �⃗⃗� 2 > = (𝑎1Φ⃗⃗⃗ 𝑢 + 𝑏1Φ⃗⃗⃗ 𝑣) ∙ (−𝑎2�⃗⃗� 𝑢 − 𝑏2�⃗⃗� 𝑣) 

                                            = < �⃗⃗� 1,𝑊(�⃗⃗� 2) >  

 So 𝑊 is self adjoint. 
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There is a theorem from linear algebra that says that if 𝑃: 𝑉 → 𝑉 is a self 

adjoint linear map of 𝑉, a two (or 𝑛) dimensional vector space into itself, then 

there exists an orthonormal basis 𝑒 1 and 𝑒 2 of 𝑉 such that 𝑃(𝑒 1) = 𝜆1𝑒 1 and 

𝑃(𝑒 2) = 𝜆2𝑒 2 (that is, 𝑒 1 and 𝑒 2 are eigenvectors and 𝜆1, 𝜆2 are eigenvalues 

of 𝑃). 

In the case of the Weingarten map: 𝑊: 𝑇𝑝𝑆 → 𝑇𝑝𝑆,  there are 

orthonormal tangent vectors to 𝑆, 𝑡 1, 𝑡 2 ∈ 𝑇𝑝𝑆 such that: 

𝑊(𝑡 1) = 𝜅1𝑡 1 

  𝑊(𝑡 2) = 𝜅2𝑡 2. 

 

Then with respect to the basis vectors 𝑡 1 and 𝑡 2, the matrix 𝑊 is given by: 

 

                                              𝑊 = (
𝜅1 0
0 𝜅2

).    

 

If 𝜅1 = 𝜅2 = 𝜅, then:  

                                 𝑊 = (
𝜅 0
0 𝜅

)   (i.e. a multiple of the identity matrix). 

 

Def.  𝜅1, 𝜅2 are called the principal curvatures of 𝑆 and 𝑡 1, 𝑡 2 are called 

         principal vectors corresponding to 𝜅1, 𝜅2. 

 

Def.  If 𝜅1 = 𝜅2 for 𝑝 ∈ 𝑆, we say 𝑝 is an umbilic point of 𝑆. 
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Prop.  If 𝜅1 and 𝜅2 are the principal curvatures of 𝑝 ∈ 𝑆, then the mean 

 and Gaussian curvatures are given by: 

𝐻 =
1

2
(𝜅1 + 𝜅2) ,    𝐾 = (𝜅1)(𝜅2).  

 

Proof:  The determinant and trace of a linear transformation do not change when 

  the basis is changed. Thus, using the principal vectors as a basis, the 

            Weingarten map is represented by: 

(
𝜅1 0
0 𝜅2

). 

 

 Hence: 

                    𝐾 = det(𝑊) = (𝜅1)(𝜅2) and 

                    𝐻 =  
1

2
trace(𝑊) =

1

2
( 𝜅1 + 𝜅2). 

 

One application of principal curvatures and principal vectors is given by: 

 

Theorem (Euler’s Theorem): Let 𝛾 be a curve on an oriented surface, 𝑆,   

and let 𝜅1, 𝜅2 be the principal curvatures of Φ⃗⃗⃗ , with non-zero principal vectors, 

𝑡 1 and 𝑡 2. Then the normal curvature of 𝛾 is: 

𝜅𝑛 = 𝜅1 cos2 𝜃 + 𝜅2 sin2 𝜃 

 where 𝜃 is the angle between 𝑡 1 and 𝛾′(𝑡). 
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Proof:    Let 𝑡 1 and 𝑡 2 be an orthonormal basis for 𝑇𝑝𝑆 with 𝑊(𝑡 1) = 𝜅1𝑡 1    

and 𝑊(𝑡 2) = 𝜅2𝑡 2. We can take 𝛾 to be unit speed since curvatures are  

independent of the parametrization, so we can write: 

                                                                           𝛾′(𝑠) = 𝑎𝑡 1 + 𝑏 𝑡 2;   where 

                                                                            𝑐𝑜𝑠𝜃 =
𝑎

‖𝛾′(𝑠)‖
= 𝑎 

                                                                   𝑠𝑖𝑛𝜃 =
𝑏

‖𝛾′(𝑠)‖
= 𝑏;      so, 

                                                                    𝛾′(𝑠) = (cos 𝜃)𝑡 1 + (sin 𝜃)𝑡 2. 

 

 We saw earlier that: 

              𝜅𝑛 = < 𝑊(𝛾′(𝑠)), 𝛾′(𝑠) >  

             = < 𝑊 ((cos 𝜃)𝑡 1 + (sin 𝜃)𝑡 2) , (cos 𝜃)𝑡 1 + (sin 𝜃)𝑡 2 > 

= < (cos 𝜃)𝑊(𝑡 1) + (sin 𝜃)𝑊(𝑡 2), (cos 𝜃)𝑡 1 + (sin 𝜃)𝑡 2 > 

= < (cos 𝜃)𝜅1(𝑡 1) + (sin 𝜃)𝜅2(𝑡 2), (cos 𝜃)𝑡 1 + (sin 𝜃)𝑡 2 > 

               𝜅𝑛 = (cos2 𝜃)𝜅1 + (sin2 𝜃)𝜅2. 

 

𝛾(𝑡) 

𝛾′(𝑡) 𝑡 1 

𝑡 2 

𝜃 

𝑡 1 

𝑡 2 

𝜃 

𝑎 

𝑏 

𝛾′(𝑠) = 𝑎𝑡 1 + 𝑏 𝑡 2 
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Cor:  The principal curvatures at a point on a surface are the maximum and 

minimum values of the normal curvature of all curves on the surface passing 

through the point. Moreover, the principal vectors are the tangent vectors of the 

curves giving these maximum and minimum values. 

 

Proof:  If 𝜅1 ≠ 𝜅2, assume 𝜅1 > 𝜅2, then we can write:  

 

𝜅𝑛 = 𝜅1 cos2 𝜃 + 𝜅2 sin2 𝜃 

             = 𝜅1(1 − sin2 𝜃) + 𝜅2 sin2 𝜃 

                                         𝜅𝑛 = 𝜅1 − (𝜅1 − 𝜅2) sin2 𝜃.  

 

 Thus, 𝜅𝑛 ≤ 𝜅1 since 𝜅1 − 𝜅2 > 0 and sin2 𝜃 ≥ 0. 

 In addition, 𝜅𝑛 = 𝜅1 if, and only if, 𝜃 = 0 or 𝜋, i.e., 𝛾′(𝑠) is parallel 

 to 𝑡 1.     

 

 Similarly, we know: 

𝜅𝑛 = 𝜅1 cos2 𝜃 + 𝜅2(1 − cos2 𝜃) = 𝜅2 + (𝜅1 − 𝜅2) cos2 𝜃 

 Thus, 𝜅𝑛 ≥ 𝜅2 with equality if, and only if, 𝜃 =
𝜋

2
 or 

3𝜋

2
  i.e., 𝛾′(𝑠) is 

 parallel to 𝑡 2.    

 

 If 𝜅1 = 𝜅2, then 𝜅𝑛 = 𝜅1 cos2 𝜃 + 𝜅1 sin2 𝜃 = 𝜅1 and every unit

 tangent vector to the surface is a principal vector since every unit vector is 

            an eigenvector: 

                                         (
𝜅1 0
0 𝜅1

) (
𝑎
𝑏
) = 𝜅1 (

𝑎
𝑏
). 
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Cor.  The mean curvature, 𝐻, is the average value of the normal curvature over 

          0 ≤ 𝜃 ≤ 2𝜋.     

 

Proof:     
1

2𝜋
∫ 𝜅𝑛𝑑𝜃 =

1

2𝜋
∫ [(cos2 𝜃)𝜅1 + (sin2 𝜃)𝜅2]𝑑𝜃

𝜃=2𝜋

𝜃=0

𝜃=2𝜋

𝜃=0
  

                        =
1

2𝜋
[𝜅1 ∫ cos2 𝜃𝑑𝜃 + 𝜅2 ∫ sin2 𝜃𝑑𝜃]

2𝜋

𝜃=0

2𝜋

𝜃=0
 

                        =
1

2𝜋
[𝜅1 ∫ (

1

2
+

1

2
𝑐𝑜𝑠2𝜃) 𝑑𝜃 + 𝜅2 ∫ (

1

2
−

1

2
𝑐𝑜𝑠2𝜃) 𝑑𝜃]

2𝜋

𝜃=0

2𝜋

𝜃=0
 

                        =
1

2𝜋
[𝜅1(𝜋) + 𝜅2(𝜋)] =

1

2
[𝜅1 + 𝜅2] = 𝐻. 

 

 

Recall from linear algebra, if 𝑃 is a linear transformation of a vector space 

𝑉 into 𝑉, then �⃗⃗� ∈ 𝑉 is an eigenvector of 𝑃 if 𝑃(�⃗⃗� ) = 𝜆�⃗⃗� . In this case, 𝜆 is 

called the eigenvalue of 𝑃. This is equivalent to saying: 

(𝑃 − 𝜆𝐼)�⃗⃗� = 0⃗ . 

 

To find the eigenvalues we solve the equation: 

                                  det(𝑃 − 𝜆𝐼) = 0 for 𝜆.  

 

To find the eigenvectors, �⃗⃗� , we let �⃗⃗� = 𝑎�⃗⃗� 1 + 𝑏�⃗⃗� 2; where �⃗⃗� 1 and �⃗⃗� 2 

are basis vectors for 𝑉 and solve for 𝑎, 𝑏 in: 

(𝑃 − 𝜆𝐼) (
𝑎
𝑏
) = (

0
0
). 
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Given a surface patch Φ⃗⃗⃗ (𝑢, 𝑣) for a surface, 𝑆, how do we calculate 𝜅1 

and 𝜅2, the principal curvatures?  

𝜅1 and 𝜅2 are the eigenvalues of 𝑊, the Weingarten map, and we already 

saw that: 

𝑊 = (𝐹1
−1)(𝐹2) 

where 𝐹1 and 𝐹2 are the matrix representations of the first and second 

fundamental forms with respect to the basis Φ⃗⃗⃗ 𝑢 and Φ⃗⃗⃗ 𝑣.  

 

 Thus we need to solve: det(𝐹1
−1𝐹2 −𝜅𝐼) = 0 for 𝜅.  

 

 Notice that:         det(𝐹1
−1𝐹2 −𝜅𝐼) = det(𝐹1

−1(𝐹2 −𝜅𝐹1)) 

                                                             = det(𝐹1
−1) det(𝐹2 − 𝜅𝐹1) = 0.   

 

Since det(𝐹1
−1) ≠ 0, this is equivalent to solving:         det(𝐹2 − 𝜅𝐹1) = 0.          

             

      We can find the principal curvature vectors, 𝑡 1 and 𝑡 2, which are the 

eigenvectors of 𝑊 = 𝐹1
−1𝐹2 by letting 𝑡 = 𝑎Φ⃗⃗⃗ 𝑢 + 𝑏Φ⃗⃗⃗ 𝑣 and solving: 

(𝐹1
−1𝐹2 − 𝜅𝐼) (

𝑎
𝑏
) = (

0
0
).  

 

This is the equivalent to solving: 

𝐹1
−1(𝐹2 − 𝜅𝐹1) (

𝑎
𝑏
) = (

0
0
) 

or 

         (𝐹2 − 𝜅𝐹1) (
𝑎
𝑏
) = (

0
0
). 
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Recall that with respect to the basis of 𝑇𝑝𝑆 given by Φ⃗⃗⃗ 𝑢 and Φ⃗⃗⃗ 𝑣, we have: 

𝐹1 = (
𝐸 𝐹
𝐹 𝐺

) and 𝐹2 = (
𝐿 𝑀
𝑀 𝑁

) 

where 𝐸, 𝐹, 𝐺, 𝐿,𝑀, 𝑁 are defined as before. 

 

Proposition:  The principal curvatures are the roots of: 

|
𝐿 − 𝜅𝐸 𝑀 − 𝜅𝐹
𝑀 − 𝜅𝐹 𝑁 − 𝜅𝐺

| = 0 

 and the principal curvature vectors to the principal curvature, 𝜅, are the 

          unit tangent vectors, 𝑡 = 𝑎Φ⃗⃗⃗ 𝑢 + 𝑏Φ⃗⃗⃗ 𝑣 such that:  

(
𝐿 − 𝜅𝐸 𝑀 − 𝜅𝐹
𝑀 − 𝜅𝐹 𝑁 − 𝜅𝐺

) (
𝑎
𝑏
) = (

0
0
). 

 

 

Ex.  Find the principal curvatures and principal curvature vectors for the sphere of 

        radius, 𝑅. 

 

 We saw earlier that for the parametrization of 𝑆2 by: 

Φ⃗⃗⃗ (𝜙, 𝜃) = (Rcos 𝜃 sin𝜙 , Rsin 𝜃 sin𝜙 , Rcos𝜙) 

 We have: 

𝐹1 = (
𝑅2 0
0 𝑅2 sin2 𝜙

)  

 and  

     𝐹2 = (
−𝑅 0
0 −𝑅 sin2 𝜙

) . 
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That is: 

            𝐸 = 𝑅2,           𝐹 = 0,         𝐺 = 𝑅2 sin2 𝜙, 

           𝐿 = −𝑅,         𝑀 = 0,         𝑁 = −𝑅 sin2 𝜙.  

 

 Thus, to find the eigenvalues of 𝑊 we solve det(𝐹2 − 𝜅𝐹1) = 0: 

 

|
−𝑅 − 𝜅𝑅2 0

0 −𝑅 sin2 𝜙 − 𝜅𝑅2 sin2 𝜙
| = 0 

 

|
−𝑅(1 + 𝜅𝑅) 0

0 −𝑅 (sin2 𝜙) (1 + 𝜅𝑅)
| = 0 

 

𝑅2 sin2 𝜙 (1 + 𝜅𝑅)2 = 0. 

𝜅 = −
1

𝑅
  , a double root so: 

𝜅1 = 𝜅2 = −
1

𝑅
 .  

 

 Since 𝜅1 = 𝜅2, every unit vector 𝑡 ∈ 𝑇𝑝𝑆 is a principal curvature vector 

 (for all points 𝑝 ∈ 𝑆). Hence, every point of 𝑆 is an umbilic point. 

  

 Note: 𝜅1, 𝜅2 depend on which direction we choose for �⃗⃗� , the unit 

 normal to 𝑆. If we had chosen −�⃗⃗�  for 𝑆2 we would have gotten: 

𝜅1 = 𝜅2 =
1

𝑅
 .  
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Ex.   Find the principal curvatures and principal curvature vectors for the helicoid 

        given by: 

 Φ⃗⃗⃗ (𝑢, 𝑣) = (𝑣 cos 𝑢 , 𝑣 sin 𝑢 , 2𝑢);    0 ≤ 𝑣 ≤ 3, 𝑢 ∈ ℝ. 

 

 

       Φ⃗⃗⃗ 𝑢 = (−𝑣 sin 𝑢, 𝑣 cos 𝑢 , 2)    

        Φ⃗⃗⃗ 𝑣 = (cos 𝑢, sin 𝑢 , 0)  

Φ⃗⃗⃗ 𝑢 × Φ⃗⃗⃗ 𝑣 = |
𝑖 𝑗 �⃗� 

−𝑣 sin 𝑢 𝑣 cos 𝑢 2
cos 𝑢 sin 𝑢 0

| 

                  = −2 sin 𝑢 𝑖 + 2 cos 𝑢 𝑗 − 𝑣�⃗�  

 

‖Φ⃗⃗⃗ 𝑢 × Φ⃗⃗⃗ 𝑣‖ = √4 sin2 𝑢 + 4 cos2 𝑢 + 𝑣2 = √4 + 𝑣2 

 

�⃗⃗� =
Φ⃗⃗⃗ 𝑢×Φ⃗⃗⃗ 𝑣

‖Φ⃗⃗⃗ 𝑢×Φ⃗⃗⃗ 𝑣‖
=

(−2 sin𝑢,2 cos𝑢,−𝑣)

√4+𝑣2
  

 

𝐸 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢 = (−𝑣 sin 𝑢, 𝑣 cos 𝑢 , 2) ∙ (−𝑣 sin 𝑢, 𝑣 cos 𝑢 , 2) = 𝑣2 + 4 

 𝐹 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑣 = (−𝑣 sin 𝑢, 𝑣 cos 𝑢 , 2) ∙ (cos 𝑢, sin 𝑢 , 0) = 0 

 𝐺 = Φ⃗⃗⃗ 𝑣 ∙ Φ⃗⃗⃗ 𝑣 = (cos 𝑢, sin 𝑢 , 0) ∙ (cos 𝑢, sin 𝑢 , 0) = 1. 

 

 

 

Φ⃗⃗⃗ (𝑢, 𝑣) 
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     Φ⃗⃗⃗ 𝑢𝑢 = (−𝑣 cos 𝑢 ,−𝑣 sin 𝑢 , 0) 

      Φ⃗⃗⃗ 𝑢𝑣 = (− sin 𝑢 , cos 𝑢 , 0) 

       Φ⃗⃗⃗ 𝑣𝑣 = (0, 0, 0) 

 

       𝐿 = Φ⃗⃗⃗ 𝑢𝑢 ∙ �⃗⃗� = (−𝑣 cos 𝑢 , −𝑣 sin 𝑢 , 0) ∙ 
(−2 sin𝑢,2 cos 𝑢,−𝑣)

√4+𝑣2
 = 0 

 

       𝑀 = Φ⃗⃗⃗ 𝑢𝑣 ∙ �⃗⃗� = (− sin 𝑢 , cos 𝑢 , 0) ∙ 
(−2 sin𝑢,2 cos𝑢,−𝑣)

√4+𝑣2
=

2

√4+𝑣2
  

  

        𝑁 = Φ⃗⃗⃗ 𝑣𝑣 ∙ �⃗⃗� = (0, 0, 0) ∙ 
(−2 sin𝑢,2 cos𝑢,−𝑣)

√4+𝑣2
 = 0.  

 

So we have: 

            𝐹1 = (𝑣
2 + 4 0
0 1

)     and   𝐹2 = (
0

2

√4+𝑣2

2

√4+𝑣2
0

).           

 

 So to find the principal curvatures we must solve det(𝐹2 − 𝜅𝐹1) = 0: 

|
−𝜅(𝑣2 + 4)

2

√4+𝑣2

2

√4+𝑣2
−𝜅

| = 0  

                                                𝜅2(𝑣2 + 4) − 
4

4+𝑣2 = 0 

                                                                              𝜅2 = 
4

(4+𝑣2)2
 

                                                      𝜅 = ± 
2

4+𝑣2 . 
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To find 𝑡 1 and 𝑡 2 we solve (𝐹2 − 𝜅𝐹1) (
𝑎
𝑏
) = (

0
0
):  

 

                       𝜅 =  
2

4+𝑣2 ;      𝑡 1 = 𝑎Φ⃗⃗⃗ 𝑢 + 𝑏Φ⃗⃗⃗ 𝑣.  

 

(
𝐿 − 𝜅𝐸 𝑀 − 𝜅𝐹
𝑀 − 𝜅𝐹 𝑁 − 𝜅𝐺

) (
𝑎
𝑏
) = (

0
0
) 

 

(
−2

2

√4+𝑣2

2

√4+𝑣2
−

2

4+𝑣2

)(
𝑎
𝑏
) = (

0
0
)  

 

−2𝑎 +
2

√4+𝑣2
𝑏 = 0  ⟹ 𝑏 = 𝑎√4 + 𝑣2.   

 

 So any vector of the form (𝑎, 𝑎√4 + 𝑣2) will get mapped to (0,0). 

 We want a unit vector so we must find 𝑎 such that: 

                 1 = t 1 ∙ 𝑡 1 = 𝑎(1, √4 + 𝑣2) ∙ 𝑎(1, √4 + 𝑣2) 

                                     = 𝑎2(Φ⃗⃗⃗ 𝑢 + √4 + 𝑣2 Φ⃗⃗⃗ 𝑣) ∙ (Φ⃗⃗⃗ 𝑢 + √4 + 𝑣2 Φ⃗⃗⃗ 𝑣)   

                                     = 𝑎2(𝐸 + 2√4 + 𝑣2𝐹 + (4 + 𝑣2)𝐺) 

                                     = 𝑎2(4 + 𝑣2 + 4 + 𝑣2) = 2𝑎2(4 + 𝑣2).  

 

            Solving for a we get: 

                               𝑎 = ± 
1

√2√4+𝑣2
. 

            Thus 𝑡 1 can be either: 

                              𝑡 1 = ± 
1

√2√4+𝑣2
(1,√4 + 𝑣2).  
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 Similarly, if  𝜅 = −
2

4+𝑣2 , then we solve: 

(
2

2

√4+𝑣2

2

√4+𝑣2

2

4+𝑣2

)(
𝑎
𝑏
) = (

0
0
)  

 

                             2𝑎 +
2

√4+𝑣2
𝑏 = 0  ⟹ 𝑏 = −𝑎√4 + 𝑣2.   

 

So any vector of the form (𝑎, −𝑎√4 + 𝑣2) will get mapped to (0,0). 

Again we want to find an 𝑎 so that this is a unit vector. 

 

          1 = t 2 ∙ 𝑡 2 = 𝑎(1,−√4 + 𝑣2) ∙ 𝑎(1, −√4 + 𝑣2) 

                              = 𝑎2(Φ⃗⃗⃗ 𝑢 − √4 + 𝑣2Φ⃗⃗⃗ 𝑣) ∙ (Φ⃗⃗⃗ 𝑢 − √4 + 𝑣2Φ⃗⃗⃗ 𝑣)   

                              = 𝑎2(𝐸 − 2√4 + 𝑣2𝐹 + (4 + 𝑣2)𝐺) 

                               = 𝑎2(4 + 𝑣2 + 4 + 𝑣2) = 2𝑎2(4 + 𝑣2).  

 

             Solving for a we get: 

                               𝑎 = ±
1

√2√4+𝑣2
 

 

              Thus 𝑡 2 can be either: 

                              𝑡 2 = ±
1

√2√4+𝑣2
(1,−√4 + 𝑣2).  
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Notice that 𝑡 1 and 𝑡 2 are perpendicular to eachother since if we take                

𝑡 1 =
1

√2√4+𝑣2
(1, √4 + 𝑣2) and 𝑡 2 =

1

√2√4+𝑣2
(1,−√4 + 𝑣2) for example: 

 

     𝑡 1 ∙ 𝑡 2 =
1

√2√4+𝑣2
(1, √4 + 𝑣2) ∙ 

1

√2√4+𝑣2
(1, −√4 + 𝑣2) 

                =  
1

2(4+𝑣2)
 (Φ⃗⃗⃗ 𝑢 + √4 + 𝑣2 Φ⃗⃗⃗ 𝑣) ∙  (Φ⃗⃗⃗ 𝑢 − √4 + 𝑣2 Φ⃗⃗⃗ 𝑣) 

                 =
1

2(4+𝑣2)
(Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢 − (4 + 𝑣2)Φ⃗⃗⃗ 𝑣 ∙ Φ⃗⃗⃗ 𝑣) 

                  =
1

2(4+𝑣2)
(𝐸 − (4 + 𝑣2)𝐺) 

                   =
1

2(4+𝑣2)
((4 + 𝑣2) − (4 + 𝑣2)) = 0. 

 

 

Now since 𝜅1 =
2

4+𝑣2   and 𝜅2 = −
2

4+𝑣2 , the Gauss curvature is: 

Κ =
2

4+𝑣2 (−
2

4+𝑣2) = −  
4

(4+𝑣2)2
 < 0. 

 And the mean curvature is: 

𝐻 =
1

2
(𝜅1 + 𝜅2) = 0  

A surface with mean curvature equal to zero everywhere is called a minimal 

surface. Given a boundary curve, 𝛾, a minimal surface, 𝑆, is a surface that has the 

smallest area among all surfaces with boundry curve 𝛾. The helicoid is an example 

of a minimal surface. 
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Ex.  A corollary to Euler’s theorem says the principal curvatures are the maximum 

and minimum normal curvature of all curves through a given point on a surface.  

Show by direct calculation that this is true for the surface in the previous example. 

 

Since any two curves through a point on a surface with parallel velocity vectors 

have the same normal curvature, we only need to calculate the maximum and 

minimum normal curvatures of curves of the form: 

                                 𝑢(𝑡) = 𝑢0 + 𝑡 

                             𝑣(𝑡) = 𝑣0 + 𝛼𝑡;     𝛼 ∈ ℝ  

and the vertical line 𝑢(𝑡) = 𝑢0,   𝑣(𝑡) = 𝑣0 + 𝑡, 

where    𝛾(𝑡) = Φ⃗⃗⃗ (𝑢(𝑡), 𝑣(𝑡)).   

So:                            𝑢′(𝑡) = 1    and     𝑣′(𝑡) = 𝛼 (except for the vertical line).  

 

From the previous example we know that: 

𝐸 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢 = 𝑣2 + 4                    𝐿 = Φ⃗⃗⃗ 𝑢𝑢 ∙ �⃗⃗� = 0  

 𝐹 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑣 = 0                             𝑀 = Φ⃗⃗⃗ 𝑢𝑣 ∙ �⃗⃗� =
2

√4+𝑣2
       

 𝐺 = Φ⃗⃗⃗ 𝑣 ∙ Φ⃗⃗⃗ 𝑣 = 1                             𝑁 = Φ⃗⃗⃗ 𝑣𝑣 ∙ �⃗⃗� = 0.   

 

Plugging in to the formula for normal curvature at Φ⃗⃗⃗ (𝑢0, 𝑣0) we get: 

𝜅𝑛 =
𝐿(

𝑑𝑢

𝑑𝑡
)
2
+2𝑀(

𝑑𝑢

𝑑𝑡
)(

𝑑𝑣

𝑑𝑡
)+𝑁(

𝑑𝑣

𝑑𝑡
)
2

𝐸(
𝑑𝑢

𝑑𝑡
)
2
+2𝐹(

𝑑𝑢

𝑑𝑡
)(

𝑑𝑣

𝑑𝑡
)+𝐺(

𝑑𝑣

𝑑𝑡
)
2 =

4𝛼

√4+𝑣0
2

𝑣0
2+4+𝛼2     

      

       =
4

√4+𝑣0
2
(

𝛼

𝑣0
2+4+𝛼2). 



16 
 

Now find the max/min of 𝜅𝑛 over all 𝛼 ∈ ℝ and the vertical line  𝑢(𝑡) = 𝑢0, 

𝑣(𝑡) = 𝑣0 + 𝑡. 

 

Through direct calculation we find that: 

𝜅𝑛
′ (𝛼) =

4

√4+𝑣0
2
[

𝑣0
2+4−𝛼2

(𝑣0
2+4+𝛼2)

2] = 0      ⇒    𝛼 = ±√𝑣0
2 + 4.      

By checking the sign of 𝜅𝑛
′ (𝛼) as we go through the points 𝛼 = ±√𝑣0

2 + 4 we 

see that 𝜅𝑛(𝛼) has a local minimum at 𝛼 = −√𝑣0
2 + 4 and a local maximum at 

𝛼 = √𝑣0
2 + 4.   

Since lim
𝛼→±∞

𝜅𝑛(𝛼) = 0, the local maximum and minimum are global maxima and 

minima. 

𝜅𝑛 (−√𝑣0
2 + 4) =

4

√4+𝑣0
2
(

−√𝑣0
2+4

𝑣0
2+4+(−√𝑣0

2+4)2
)  

                           = −
2

𝑣0
2+4

  

 

𝜅𝑛 (√𝑣0
2 + 4) =

4

√4+𝑣0
2
(

√𝑣0
2+4

𝑣0
2+4+(√𝑣0

2+4)2
)  

                        =
2

𝑣0
2+4

 . 

For the vertical line  𝑢(𝑡) = 𝑢0,   𝑣(𝑡) = 𝑣0 + 𝑡, we find 𝜅𝑛 = 0, so the 

absolute maximum and minimum of the normal curvature occurs at the principal 

curvatures. 
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Ex.  Given the Gauss curvature, Κ, and the mean curvature, 𝐻, find the principal 

        curvatures. 

 

𝐻 =
1

2
(𝜅1 + 𝜅2)       (∗) 

Κ = 𝜅1𝜅2                    (∗∗) 

Now solve these equations simultaneously to find 𝜅1 and 𝜅2.  

From (∗∗),    𝜅2 =
Κ

𝜅1
 . 

From  (∗),         2𝐻 = (𝜅1 + 𝜅2) = 𝜅1 + 
Κ

𝜅1
       

                      2𝐻𝜅1 = 𝜅1
2 + Κ 

                              0 = 𝜅1
2 − 2𝐻𝜅1 + Κ.  

 

Now using the quadratic formula: 

                             𝜅1 = 
2𝐻±√4𝐻2−4Κ

2
 = 𝐻 ± √𝐻2 − Κ. 

So we have: 

                              𝜅1 =  𝐻 + √𝐻2 − Κ 

                           𝜅2 =  𝐻 − √𝐻2 − Κ .  

 

In the previous example we had:    𝐻 = 0,   Κ = − 
4

(4+v2)2
  , 

                           𝜅1 = 0 + √0 +
4

(4+𝑣2)2
= 

2

4+𝑣2 

                           𝜅2 = 0 − √0 +
4

(4+𝑣2)2
= 

−2

4+𝑣2 .  


