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Normal Curvature and Geodesic Curvature 

 

The shape of a surface will clearly impact the curvature of the curves on the 

surface. For example, it’s possible for a curve in a plane or on a cylinder to have 

zero curvature everywhere (i.e. it’s a line or a portion of a line). However, it’s not 

possible for a curve on a sphere to have zero curvature everywhere. So one way 

to measure how much a surface curves is by examining the curvature of the 

curves on the surface, this will lead us to the second fundamental form. 

  Let 𝛾 be a unit speed curve on an oriented surface, 𝑆. Then, 𝛾′(𝑠) is a unit 

vector that is tangent to the surface. Thus, 𝛾′(𝑠) is perpendicular to the unit 

normal vector, �⃗⃗� , of 𝑆.  So 𝛾′(𝑠), �⃗⃗� , and �⃗⃗� × 𝛾′(𝑠) are mutually 

perpendicular unit vectors. 

 Since 𝛾′ ∙ 𝛾′ = 1, by differentiating this equation we get: 

𝛾′′(𝑠) ∙ 𝛾′(𝑠) = 0. 

 Thus, 𝛾′′(𝑠) is perpendicular to 𝛾′(𝑠) and must lie in the plane spanned 

by �⃗⃗�  and �⃗⃗� × 𝛾′(𝑠). So we can write: 

      𝛾′′(𝑠) = 𝑎�⃗⃗� + 𝑏 (�⃗⃗� × 𝛾′(𝑠)).  

 

Def.   We define 

  𝑎 = 𝜅𝑛 =  the normal curvature of 𝛾 

  𝑏 = 𝜅𝑔 = the geodesic curvature of 𝛾 

  so:        

 𝛾′′(𝑠) = 𝜅𝑛�⃗⃗� + 𝜅𝑔 (�⃗⃗� × 𝛾
′(𝑠)). 

 

 

𝛾′(𝑠) 

𝛾(𝑠) 𝑝 

�⃗⃗� 𝑝 

𝛾′′(𝑠) 

�⃗⃗� 𝑝 × 𝛾′(𝑠) 

𝜅𝑛 

𝜅𝑔  

𝑆 

𝜓 
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 Notice that if we replace �⃗⃗�  with −�⃗⃗�  (the other unit normal of 𝑆) the 

normal and geodesic curvature also change signs.  

 

Proposition:   κ𝑛 = 𝛾
′′(𝑠) ∙ �⃗⃗�  

   𝜅𝑔 = 𝛾
′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠))  

   𝜅2 = 𝜅n
2 + 𝜅g

2 ;   where 𝜅 = curvature of 𝛾 

and 

    𝜅𝑛 = κ cos𝜓,   𝜅𝑔 = ±𝜅 sin𝜓 

 where 𝜓 is the angle between �⃗⃗�  and the principal normal �⃗� . 

 Recall that the principal normal, �⃗� , is defined by �⃗� =
1

κ(s)
𝛾′′(𝑠). 

 

Proof: 

    𝛾′′(𝑠) = κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠)) 

 

𝛾′′(𝑠) ∙ �⃗⃗� = (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠))) ∙ �⃗⃗� = κ𝑛 

 

𝛾′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠)) = (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠))) ∙ (�⃗⃗� × 𝛾′(𝑠)) = κ𝑔 

 

κ2 = ‖𝛾′′(𝑠)‖2 = (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠))) ∙ (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾

′(𝑠)))  

                    = κn
2 + κg

2 . 
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Since κ(s)�⃗� = 𝛾′′(𝑠), we have: 

𝜅(𝑠)�⃗� = κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝜎
′(𝑠)) 

 

Given any two vectors, �⃗⃗� 1 and �⃗⃗� 2,  �⃗⃗� 1 ∙ �⃗⃗� 2 = ‖�⃗⃗� 1‖ ‖�⃗⃗� 2‖ cos𝜓 

 where 𝜓 is the angle between �⃗⃗� 1 and �⃗⃗� 2. 

 

 So since    𝜅𝑛 = 𝛾
′′(𝑠) ∙ �⃗⃗�  

                                = (κ(𝑠))�⃗� ∙ �⃗⃗�  

                          𝜅𝑛 = κ cos𝜓 

 where 𝜓 is the angle between the principal normal, �⃗� , and �⃗⃗� . 

 

                       𝜅𝑔 = 𝛾
′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠)) 

             = (𝜅(𝑠))�⃗� ∙ (�⃗⃗� × 𝛾′(𝑠)) 

                             = 𝜅 cos (
𝜋

2
− 𝜓) or 𝜅 cos (

𝜋

2
+ 𝜓);      depending on  �⃗�  

 

 

 

 

 

                           

                     𝜅𝑔 = ±𝜅 sin𝜓. 

�⃗⃗�  �⃗� =
1

𝜅
𝛾′′(𝑠) 

�⃗⃗� × 𝛾′(𝑠) 
𝜓 𝜋

2
−𝜓 

�⃗⃗�  

�⃗⃗� × 𝛾′(𝑠) 

 

�⃗� =
1

𝜅
𝛾′′(𝑠) 

 

𝜓 

𝜋

2
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Proposition: If 𝛾 is a unit speed curve on an oriented surface          

parametrized by Φ⃗⃗⃗ : 𝑈 ⊆ ℝ2 → 𝑆 and 𝛾(𝑠) = Φ⃗⃗⃗ (𝑢(𝑠), 𝑣(𝑠)), then       

                           𝜅𝑛 = < 𝑊(𝛾
′(𝑠)), 𝛾′(𝑠) >  

                                                             or 

𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

     

 

  where 𝐿 = Φ⃗⃗⃗ 𝑢𝑢 ∙ �⃗⃗�  ,   𝑀 = Φ⃗⃗⃗ 𝑢𝑣 ∙ �⃗⃗� = Φ⃗⃗⃗ 𝑣𝑢 ∙ �⃗⃗� ,   and 𝑁 = Φ⃗⃗⃗ 𝑣𝑣 ∙ �⃗⃗� . 

 

Proof:     𝛾′(𝑠) is tangent to 𝑆 so it’s perpendicular to �⃗⃗� . Hence, 

�⃗⃗� ∙ 𝛾′(𝑠) = 0.    Differentiating we get: 

          �⃗⃗� ∙ 𝛾′′(𝑠) + �⃗⃗� ′ ∙ 𝛾′(𝑠) = 0 

                      𝜅𝑛 = �⃗⃗� ∙ 𝛾
′′(𝑠) = −�⃗⃗� ′ ∙ 𝛾′(𝑠).  

 

 But we know: 

�⃗⃗� ′(𝑠) =
𝑑

𝑑𝑠
(�̃�(𝛾(𝑠))) = −𝑊(𝛾′(𝑠)).    

           So:         𝜅𝑛 = 𝑊(𝛾
′(𝑠)) ∙ 𝛾′(𝑠). 

We saw earlier this is just:  𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

     

 

 Thus, any two curves on a surface, 𝑆, that go through the point  

 𝑝 ∈ 𝑆 and have parallel tangent vectors at 𝑝 ∈ 𝑆 must have the same 

            normal curvature at 𝑝 ∈ 𝑆. 
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Ex.  Let 𝛾 be a regular curve but not necessarily unit speed. Show that if  

       Φ⃗⃗⃗ : 𝑈 ⊆ ℝ2 → 𝑆 is a parametrization of 𝑆 and 𝛾(𝑡) = Φ⃗⃗⃗ (𝑢(𝑡), 𝑣(𝑡)),  then:  

𝜅𝑛 = 
𝐿(
𝑑𝑢

𝑑𝑡
)
2
+2𝑀(

𝑑𝑢

𝑑𝑡
)(
𝑑𝑣

𝑑𝑡
)+𝑁(

𝑑𝑣

𝑑𝑡
)
2

𝐸(
𝑑𝑢

𝑑𝑡
)
2
+2𝐹(

𝑑𝑢

𝑑𝑡
)(
𝑑𝑣

𝑑𝑡
)+𝐺(

𝑑𝑣

𝑑𝑡
)
2  

 

 where 𝐸 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢,    𝐹 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑣,    𝐺 = Φ⃗⃗⃗ 𝑣 ∙ Φ⃗⃗⃗ 𝑣   (i.e. the 

 denominator is 𝛾′(𝑡) ∙ 𝛾′(𝑡) = (
𝑑𝑠

𝑑𝑡
)
2

) and  

 

                            𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2
)

3
2

  .  

 

 

 We know that if 𝛾 is unit speed, then: 

     𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

 .    

 By the chain rule: 

                    
𝑑𝑢

𝑑𝑡
=
𝑑𝑢

𝑑𝑠

𝑑𝑠

𝑑𝑡
   

            so:         
𝑑𝑢

𝑑𝑠
=

𝑑𝑢
𝑑𝑡

(
𝑑𝑠
𝑑𝑡
)

  and  
𝑑𝑣

𝑑𝑠
=

𝑑𝑣
𝑑𝑡

(
𝑑𝑠
𝑑𝑡
)
 .      
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Thus we have: 

𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
  )

2

+ 2𝑀(
𝑑𝑢

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
)(

𝑑𝑣

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
) + 𝑁 (

𝑑𝑣

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
)

2

  

 

    =
1

(
𝑑𝑠

𝑑𝑡
)
2 (𝐿 (

𝑑𝑢

𝑑𝑡
)
2
+ 2𝑀 (

𝑑𝑢

𝑑𝑡
) (

𝑑𝑣

𝑑𝑡
) + 𝑁 (

𝑑𝑣

𝑑𝑡
)
2
)  

and 

(
𝑑𝑠

𝑑𝑡
)
2
= (𝛾′(𝑡) ∙ 𝛾′(𝑡)) = 𝐸 (

𝑑𝑢

𝑑𝑡
)
2
+ 2𝐹 (

𝑑𝑢

𝑑𝑡
) (

𝑑𝑣

𝑑𝑡
) + 𝐺 (

𝑑𝑣

𝑑𝑡
)
2
.  

 

                 ⟹       𝜅𝑛 =
𝐿(
𝑑𝑢
𝑑𝑡
)
2
+2𝑀(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝑁(

𝑑𝑣
𝑑𝑡
)
2

𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2 .     

 

 

For a unit speed curve we have: 

𝜅𝑔 = 𝛾
′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠)) 

  

By the chain rule: 

                                        
𝑑𝛾

𝑑𝑠
=

𝑑𝛾
𝑑𝑡
𝑑𝑠
𝑑𝑡

      

                                   
𝑑2𝛾

𝑑𝑠2
=

𝑑𝑠
𝑑𝑡
(
𝑑
𝑑𝑠
(
𝑑𝛾
𝑑𝑡
))−(

𝑑𝛾
𝑑𝑡
)(
𝑑
𝑑𝑠
(
𝑑𝑠
𝑑𝑡
))

(
𝑑𝑠
𝑑𝑡
)
2          
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𝑑2𝛾

𝑑𝑠2
=

𝑑𝑠
𝑑𝑡

(

 
 
𝑑2𝛾

𝑑𝑡2
𝑑𝑠
𝑑𝑡

⁄  

)

 
 
−
𝑑𝛾
𝑑𝑡

(

 
 
𝑑2𝑠

𝑑𝑡2
𝑑𝑠
𝑑𝑡

⁄

)

 
 

(
𝑑𝑠
𝑑𝑡
)
2  .    

 

 Now by substituting into the formula for 𝜅𝑔: 

                  𝜅𝑔 =
𝑑2𝛾

𝑑𝑠2
∙ (�⃗⃗� ×

𝑑𝛾

𝑑𝑠
) = [

𝑑𝑠
𝑑𝑡
(
𝑑
2
𝛾

𝑑𝑡2
)−(𝑑𝛾

𝑑𝑡
)(
𝑑
2
𝑠

𝑑𝑡2
)

(
𝑑𝑠
𝑑𝑡
)
3 ] ∙ (�⃗⃗� ×

𝑑𝛾

𝑑𝑡
𝑑𝑠

𝑑𝑡

⁄ ) .       

 

            Since  
𝑑𝛾
𝑑𝑡

 ∙ (�⃗⃗� ×
𝑑𝛾

𝑑𝑡
) = 0, we get:    

 

              𝜅𝑔 =

𝑑𝑠
𝑑𝑡
(
𝑑2𝛾

𝑑𝑡2
)

(
𝑑𝑠
𝑑𝑡
)
3 ∙ (

1
𝑑𝑠

𝑑𝑡

) (�⃗⃗� ×
𝑑𝛾

𝑑𝑡
) =

𝑑2𝛾

𝑑𝑡2
∙(�⃗⃗⃗� ×

𝑑𝛾
𝑑𝑡
)

(
𝑑𝑠
𝑑𝑡
)
3  .         

 

(
𝑑𝑠

𝑑𝑡
)
2
= 𝐸 (

𝑑𝑢

𝑑𝑡
)
2
+ 2𝐹 (

𝑑𝑢

𝑑𝑡
) (

𝑑𝑣

𝑑𝑡
) + 𝐺 (

𝑑𝑣

𝑑𝑡
)
2

 so we can write: 

 

               𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2
)

3
2

 .     
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Ex.   Show that the normal curvature of any curve on a sphere of radius 𝑅 is ±
1

𝑅
 .  

 

 Using the previous example, we know: 

𝜅𝑛 =
𝐿(
𝑑𝑢
𝑑𝑡
)
2
+2𝑀(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝑁(

𝑑𝑣
𝑑𝑡
)
2

𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2  .     

 

 For a sphere of radius 𝑅, using spherical coordinates, the first fundamental 

            form is: 

(
𝑅2 0
0 𝑅2 sin2 𝜑

)   

                     (We calculated this for 𝑅 = 1 earlier. A similar calculation gives this result.)  

 

 and the second fundamental form (as we calculated) is: 

(
−𝑅 0
   0 −𝑅 sin2 𝜑

) . 

 

𝜅𝑛 = 
−𝑅(𝑢′)

2
−𝑅 sin2𝜑(𝑣′)

2

𝑅2(𝑢′)2+𝑅2 sin2𝜑(𝑣′)2
= −

1

𝑅
 .   

 

         If we switch the orientation of the sphere by taking −�⃗⃗�  instead of �⃗⃗� , the 

           first fundamental form is unchanged but the second fundamental form is  

           multiplied by −1.  

 

          So If we reverse the orientation of the sphere we get:                                   

                                   𝜅𝑛 =  
𝑅(𝑢′)

2
+𝑅 sin2𝜑(𝑣′)

2

𝑅2(𝑢′)2+𝑅2 sin2𝜑(𝑣′)2
=
1

𝑅
 . 
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Ex.  Take the unit sphere parametrized by  

          Φ⃗⃗⃗ (𝑢, 𝑣) = (𝑐𝑜𝑠𝑣(𝑠𝑖𝑛𝑢), 𝑠𝑖𝑛𝑣(𝑠𝑖𝑛𝑢), 𝑐𝑜𝑠𝑢);      

                 where:  0 ≤ 𝑢 ≤ 𝜋  and  0 ≤ 𝑣 ≤ 2𝜋. 

        Now consider the set of circles on this sphere which are the image 

         under Φ⃗⃗⃗  of 𝑢(𝑡) = 𝑐, 𝑣(𝑡) = 𝑡,  where 0 ≤ 𝑡 ≤ 2𝜋 and 𝑐 is a 

         constant with 0 < 𝑐 < 𝜋.  Calculate the geodesic curvature, 𝜅𝑔, 

        the normal curvature, 𝜅𝑛, and the curvature, 𝜅, at any point on the 

         circles.  Show that 𝜅2 = 𝜅𝑛
2 + 𝜅𝑔

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φ⃗⃗⃗ (𝑐, 𝑡)  
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Let's start with the following formulas: 

𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2
)

3
2

        

 

𝜅𝑛 =
𝐿(
𝑑𝑢
𝑑𝑡
)
2
+2𝑀(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝑁(

𝑑𝑣
𝑑𝑡
)
2

𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2      

 

             𝜅 =
‖𝛾′′×𝛾′‖

‖𝛾′‖3
 . 

 

To calculate 𝜅𝑔 we need to know 𝛾′, 𝛾′′, �⃗⃗� (𝑡), 𝑢′(𝑡), 𝑣′(𝑡), 𝐸, 𝐹, and 𝐺. 

 

𝛾(𝑡) is the image of 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡)) = (𝑐, 𝑡) under Φ⃗⃗⃗ . 

        𝛾(𝑡) = Φ⃗⃗⃗ (𝑐, 𝑡) = (𝑐𝑜𝑠𝑡(𝑠𝑖𝑛𝑐), 𝑠𝑖𝑛𝑡(𝑠𝑖𝑛𝑐), 𝑐𝑜𝑠𝑐) 

        𝛾′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, (𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, 0) 

        𝛾′′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, −(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, 0). 

 

�⃗⃗� (𝑡) is the unit normal on the sphere at 𝛾(𝑡).  Recall that: 

                                 �⃗⃗� = 
(Φ⃗⃗⃗ 𝑢×Φ⃗⃗⃗ 𝑣)

‖Φ⃗⃗⃗ 𝑢×Φ⃗⃗⃗ 𝑣‖
 . 

We saw in an earlier calculation that for the unit sphere this becomes: 

              �⃗⃗� (𝑢, 𝑣) = (𝑐𝑜𝑠𝑣(𝑠𝑖𝑛𝑢), 𝑠𝑖𝑛𝑣(𝑠𝑖𝑛𝑢), 𝑐𝑜𝑠𝑢).  
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So when 𝑢(𝑡) = 𝑐, 𝑣(𝑡) = 𝑡  we get: 

                     �⃗⃗� (𝑡) = (𝑐𝑜𝑠𝑡(𝑠𝑖𝑛𝑐), 𝑠𝑖𝑛𝑡(𝑠𝑖𝑛𝑐), 𝑐𝑜𝑠𝑐) 

       �⃗⃗� (𝑡) × 𝛾′(𝑡) = (−(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑐𝑜𝑠𝑡, −(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑠𝑖𝑛𝑡, sin2 𝑐) . 

(the above comes from a straight forward calculation of �⃗⃗� (𝑡) × 𝛾′(𝑡)). 

 

Now dot this result with 𝛾′′(𝑡) to get: 

 𝛾′′(𝑡) ∙ (�⃗⃗� (𝑡) × 𝛾′(𝑡)) 

                                            = (−(𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, −(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, 0) 

                                                      ∙ (−(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑐𝑜𝑠𝑡, −(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑠𝑖𝑛𝑡, sin2 𝑐) 

                                            = (sin2 𝑐)(𝑐𝑜𝑠𝑐).  

                      

We also know from an earlier calculation that for this parametrization of the unit 

sphere the first fundamental form is: 

                     (
1 0
0 sin2 𝑢

)    

so  𝐸 = 1, 𝐹 = 0, 𝐺 = sin2 𝑢 = sin2 𝑐.  

 

Finally, 𝑢(𝑡) = 𝑐  so  𝑢′(𝑡) = 0 

            𝑣(𝑡) = 𝑡   so   𝑣′(𝑡) = 1. 

 

Plugging into the formula for 𝜅𝑔 we get:   

            𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢

𝑑𝑡
)
2
+2𝐹(

𝑑𝑢

𝑑𝑡
)(
𝑑𝑣

𝑑𝑡
)+𝐺(

𝑑𝑣

𝑑𝑡
)
2
)

3
2

=
(sin2 𝑐)𝑐𝑜𝑠𝑐

(𝑠𝑖𝑛2𝑐)
3
2

= cot(𝑐) .      
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To calculate the normal curvature, 𝜅𝑛, we need 𝑢′, 𝑣′, 𝐸, 𝐹, 𝐺, which we have 

already calculated, as well as, 𝐿,𝑀, 𝑁. 

However, we know from the previous example that 𝜅𝑛 = ±1 (−1 for this 

parametrization), depending on which direction we take for the unit normal.  In 

either case, 𝜅𝑛
2 = 1. 

 

Finally, to calculate the curvature, 𝜅, we need to find ‖𝛾′′ × 𝛾′‖, and ‖𝛾′‖. We 

calculated earlier that: 

        𝛾′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, (𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, 0) 

        𝛾′′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, −(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, 0). 

 

So  𝛾′′ × 𝛾′ = (sin2 𝑐)�⃗�    and thus  ‖𝛾′′ × 𝛾′‖ = sin2 𝑐. 

‖𝛾′‖ = √(sin2 𝑐) sin2 𝑡 + (sin2 𝑐) cos2 𝑡 = 𝑠𝑖𝑛𝑐 .   

 

Thus we have: 

𝜅 =
‖𝛾′′×𝛾′‖

‖𝛾′‖
3 =

sin2 𝑐

sin3 𝑐
  = csc(𝑐)      (notice this is 1/(radius of circle))         

 

So 𝜅 = csc(𝑐),   𝜅𝑛 = ±1, and   𝜅𝑔 = cot(𝑐) and we have: 

𝜅𝑛
2 + 𝜅𝑔

2 = 1 + cot2 𝑐 = csc2 𝑐 = 𝜅2 . 


