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Normal Curvature and Geodesic Curvature 

 

The shape of a surface will clearly impact the curvature of the curves on the 

surface. For example, it’s possible for a curve in a plane or on a cylinder to have 

zero curvature everywhere (i.e. it’s a line or a portion of a line). However, it’s not 

possible for a curve on a sphere to have zero curvature everywhere. So one way 

to measure how much a surface curves is by examining the curvature of the 

curves on the surface, this will lead us to the second fundamental form. 

  Let 𝛾 be a unit speed curve on an oriented surface, 𝑆. Then, 𝛾′(𝑠) is a unit 

vector that is tangent to the surface. Thus, 𝛾′(𝑠) is perpendicular to the unit 

normal vector, �⃗⃗� , of 𝑆.  So 𝛾′(𝑠), �⃗⃗� , and �⃗⃗� × 𝛾′(𝑠) are mutually 

perpendicular unit vectors. 

 Since 𝛾′ ∙ 𝛾′ = 1, by differentiating this equation we get: 

𝛾′′(𝑠) ∙ 𝛾′(𝑠) = 0. 

 Thus, 𝛾′′(𝑠) is perpendicular to 𝛾′(𝑠) and must lie in the plane spanned 

by �⃗⃗�  and �⃗⃗� × 𝛾′(𝑠). So we can write: 

      𝛾′′(𝑠) = 𝑎�⃗⃗� + 𝑏 (�⃗⃗� × 𝛾′(𝑠)).  

 

Def.   We define 

  𝑎 = 𝜅𝑛 =  the normal curvature of 𝛾 

  𝑏 = 𝜅𝑔 = the geodesic curvature of 𝛾 

  so:        

 𝛾′′(𝑠) = 𝜅𝑛�⃗⃗� + 𝜅𝑔 (�⃗⃗� × 𝛾
′(𝑠)). 

 

 

𝛾′(𝑠) 

𝛾(𝑠) 𝑝 

�⃗⃗� 𝑝 

𝛾′′(𝑠) 

�⃗⃗� 𝑝 × 𝛾′(𝑠) 

𝜅𝑛 

𝜅𝑔 

𝑆 

𝜓 
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 Notice that if we replace �⃗⃗�  with −�⃗⃗�  (the other unit normal of 𝑆) the 

normal and geodesic curvature also change signs.  

 

Proposition:   κ𝑛 = 𝛾
′′(𝑠) ∙ �⃗⃗�  

   𝜅𝑔 = 𝛾
′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠))  

   𝜅2 = 𝜅n
2 + 𝜅g

2 ;   where 𝜅 = curvature of 𝛾 

and 

    𝜅𝑛 = κ cos𝜓,   𝜅𝑔 = ±𝜅 sin𝜓 

 where 𝜓 is the angle between �⃗⃗�  and the principal normal �⃗� . 

 Recall that the principal normal, �⃗� , is defined by �⃗� =
1

κ(s)
𝛾′′(𝑠). 

 

Proof: 

    𝛾′′(𝑠) = κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠)) 

 

𝛾′′(𝑠) ∙ �⃗⃗� = (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠))) ∙ �⃗⃗� = κ𝑛 

 

𝛾′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠)) = (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠))) ∙ (�⃗⃗� × 𝛾′(𝑠)) = κ𝑔 

 

κ2 = ‖𝛾′′(𝑠)‖2 = (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾
′(𝑠))) ∙ (κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝛾

′(𝑠)))  

                    = κn
2 + κg

2 . 
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Since κ(s)�⃗� = 𝛾′′(𝑠), we have: 

𝜅(𝑠)�⃗� = κ𝑛�⃗⃗� + κ𝑔 (�⃗⃗� × 𝜎
′(𝑠)) 

 

Given any two vectors, �⃗⃗� 1 and �⃗⃗� 2,  �⃗⃗� 1 ∙ �⃗⃗� 2 = ‖�⃗⃗� 1‖ ‖�⃗⃗� 2‖ cos 𝜓 

 where 𝜓 is the angle between �⃗⃗� 1 and �⃗⃗� 2. 

 

 So since    𝜅𝑛 = 𝛾
′′(𝑠) ∙ �⃗⃗�  

                                = (κ(𝑠))�⃗� ∙ �⃗⃗�  

                          𝜅𝑛 = κ cos𝜓 

 where 𝜓 is the angle between the principal normal, �⃗� , and �⃗⃗� . 

 

                       𝜅𝑔 = 𝛾
′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠)) 

             = (𝜅(𝑠))�⃗� ∙ (�⃗⃗� × 𝛾′(𝑠)) 

                             = 𝜅 cos (
𝜋

2
−𝜓) or 𝜅 cos (

𝜋

2
+𝜓);      depending on  �⃗�  

 

 

 

 

 

                           

                     𝜅𝑔 = ±𝜅 sin𝜓. 

�⃗⃗�  �⃗� =
1

𝜅
𝛾′′(𝑠) 

�⃗⃗� × 𝛾′(𝑠) 
𝜓 𝜋

2
−𝜓 

�⃗⃗�  

�⃗⃗� × 𝛾′(𝑠) 

 

�⃗� =
1

𝜅
𝛾′′(𝑠) 

 

𝜓 

𝜋

2
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Proposition: If 𝛾 is a unit speed curve on an oriented surface          

parametrized by Φ⃗⃗⃗ : 𝑈 ⊆ ℝ2 → 𝑆 and 𝛾(𝑠) = Φ⃗⃗⃗ (𝑢(𝑠), 𝑣(𝑠)), then       

                           𝜅𝑛 = < 𝑊(𝛾
′(𝑠)), 𝛾′(𝑠) >  

                                                             or 

𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

     

 

  where 𝐿 = Φ⃗⃗⃗ 𝑢𝑢 ∙ �⃗⃗�  ,   𝑀 = Φ⃗⃗⃗ 𝑢𝑣 ∙ �⃗⃗� = Φ⃗⃗⃗ 𝑣𝑢 ∙ �⃗⃗� ,   and 𝑁 = Φ⃗⃗⃗ 𝑣𝑣 ∙ �⃗⃗� . 

 

Proof:     𝛾′(𝑠) is tangent to 𝑆 so it’s perpendicular to �⃗⃗� . Hence, 

�⃗⃗� ∙ 𝛾′(𝑠) = 0.    Differentiating we get: 

          �⃗⃗� ∙ 𝛾′′(𝑠) + �⃗⃗� ′ ∙ 𝛾(𝑠) = 0 

                      𝜅𝑛 = �⃗⃗� ∙ 𝛾
′′(𝑠) = −�⃗⃗� ′ ∙ 𝛾′(𝑠).  

 

 But we know: 

�⃗⃗� ′(𝑠) =
𝑑

𝑑𝑠
(�̃�(𝛾(𝑠))) = −𝑊(𝛾′(𝑠)).    

           So:         𝜅𝑛 = 𝑊(𝛾
′(𝑠)) ∙ 𝛾′(𝑠). 

We saw earlier this is just:  𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

     

 

 Thus, any two curves on a surface, 𝑆, that go through the point  

 𝑝 ∈ 𝑆 and have parallel tangent vectors at 𝑝 ∈ 𝑆 must have the same 

            normal curvature at 𝑝 ∈ 𝑆. 
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Ex.  Let 𝛾 be a regular curve but not necessarily unit speed. Show that if  

       Φ⃗⃗⃗ : 𝑈 ⊆ ℝ2 → 𝑆 is a parametrization of 𝑆 and 𝛾(𝑡) = Φ⃗⃗⃗ (𝑢(𝑡), 𝑣(𝑡)),  then:  

𝜅𝑛 = 
𝐿(
𝑑𝑢

𝑑𝑡
)
2
+2𝑀(

𝑑𝑢

𝑑𝑡
)(
𝑑𝑣

𝑑𝑡
)+𝑁(

𝑑𝑣

𝑑𝑡
)
2

𝐸(
𝑑𝑢

𝑑𝑡
)
2
+2𝐹(

𝑑𝑢

𝑑𝑡
)(
𝑑𝑣

𝑑𝑡
)+𝐺(

𝑑𝑣

𝑑𝑡
)
2  

 

 where 𝐸 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑢,    𝐹 = Φ⃗⃗⃗ 𝑢 ∙ Φ⃗⃗⃗ 𝑣,    𝐺 = Φ⃗⃗⃗ 𝑣 ∙ Φ⃗⃗⃗ 𝑣   (i.e. the 

 denominator is 𝛾′(𝑡) ∙ 𝛾′(𝑡) = (
𝑑𝑠

𝑑𝑡
)
2
) and  

 

                            𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2
)

3
2

  .  

 

 

 We know that if 𝛾 is unit speed, then: 

     𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑠
)
2

+ 2𝑀 (
𝑑𝑢

𝑑𝑠
) (
𝑑𝑣

𝑑𝑠
) + 𝑁 (

𝑑𝑣

𝑑𝑠
)
2

 .    

 By the chain rule: 

                    
𝑑𝑢

𝑑𝑡
=
𝑑𝑢

𝑑𝑠

𝑑𝑠

𝑑𝑡
   

            so:         
𝑑𝑢

𝑑𝑠
=

𝑑𝑢
𝑑𝑡

(
𝑑𝑠
𝑑𝑡
)

  and  
𝑑𝑣

𝑑𝑠
=

𝑑𝑣
𝑑𝑡

(
𝑑𝑠
𝑑𝑡
)
 .      
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Thus we have: 

𝜅𝑛 = 𝐿 (
𝑑𝑢

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
  )

2

+ 2𝑀(
𝑑𝑢

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
)(

𝑑𝑣

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
) + 𝑁(

𝑑𝑣

𝑑𝑡

(
𝑑𝑠

𝑑𝑡
)
)

2

  

 

    =
1

(
𝑑𝑠

𝑑𝑡
)
2 (𝐿 (

𝑑𝑢

𝑑𝑡
)
2
+ 2𝑀(

𝑑𝑢

𝑑𝑡
) (

𝑑𝑣

𝑑𝑡
) + 𝑁 (

𝑑𝑣

𝑑𝑡
)
2
)  

and 

(
𝑑𝑠

𝑑𝑡
)
2
= (𝛾′(𝑡) ∙ 𝛾′(𝑡)) = 𝐸 (

𝑑𝑢

𝑑𝑡
)
2
+ 2𝐹 (

𝑑𝑢

𝑑𝑡
) (

𝑑𝑣

𝑑𝑡
) + 𝐺 (

𝑑𝑣

𝑑𝑡
)
2
.  

 

                 ⟹       𝜅𝑛 =
𝐿(
𝑑𝑢
𝑑𝑡
)
2
+2𝑀(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝑁(

𝑑𝑣
𝑑𝑡
)
2

𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2 .     

 

 

For a unit speed curve we have: 

𝜅𝑔 = 𝛾
′′(𝑠) ∙ (�⃗⃗� × 𝛾′(𝑠)) 

  

By the chain rule: 

                                        
𝑑𝛾

𝑑𝑠
=

𝑑𝛾
𝑑𝑡
𝑑𝑠
𝑑𝑡

      

                                   
𝑑2𝛾

𝑑𝑠2
=

𝑑𝑠
𝑑𝑡
(
𝑑
𝑑𝑠
(
𝑑𝛾
𝑑𝑡
))−(

𝑑𝛾
𝑑𝑡
)(
𝑑
𝑑𝑠
(
𝑑𝑠
𝑑𝑡
))

(
𝑑𝑠
𝑑𝑡
)
2          
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𝑑2𝛾

𝑑𝑠2
=

𝑑𝑠
𝑑𝑡

(

 
 
𝑑2𝛾

𝑑𝑡2
𝑑𝑠
𝑑𝑡

⁄  

)

 
 
−
𝑑𝛾
𝑑𝑡

(

 
 
𝑑2𝑠

𝑑𝑡2
𝑑𝑠
𝑑𝑡

⁄

)

 
 

(
𝑑𝑠
𝑑𝑡
)
2  .    

 

 Now by substituting into the formula for 𝜅𝑔: 

                  𝜅𝑔 =
𝑑2𝛾

𝑑𝑠2
∙ (�⃗⃗� ×

𝑑𝛾

𝑑𝑠
) = [

𝑑𝑠
𝑑𝑡
(
𝑑
2
𝛾

𝑑𝑡2
)−(𝑑𝛾

𝑑𝑡
)(
𝑑
2
𝑠

𝑑𝑡2
)

(
𝑑𝑠
𝑑𝑡
)
3 ] ∙ (�⃗⃗� ×

𝑑𝛾

𝑑𝑡
𝑑𝑠

𝑑𝑡

⁄ ) .       

 

            Since  
𝑑𝛾
𝑑𝑡

 ∙ (�⃗⃗� ×
𝑑𝛾

𝑑𝑡
) = 0, we get:    

 

              𝜅𝑔 =

𝑑𝑠
𝑑𝑡
(
𝑑2𝛾

𝑑𝑡2
)

(
𝑑𝑠
𝑑𝑡
)
3 ∙ (

1
𝑑𝑠

𝑑𝑡

)(�⃗⃗� ×
𝑑𝛾

𝑑𝑡
) =

𝑑2𝛾

𝑑𝑡2
∙(�⃗⃗⃗� ×

𝑑𝛾
𝑑𝑡
)

(
𝑑𝑠
𝑑𝑡
)
3  .         

 

(
𝑑𝑠

𝑑𝑡
)
2
= 𝐸 (

𝑑𝑢

𝑑𝑡
)
2
+ 2𝐹 (

𝑑𝑢

𝑑𝑡
) (

𝑑𝑣

𝑑𝑡
) + 𝐺 (

𝑑𝑣

𝑑𝑡
)
2

 so we can write: 

 

               𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2
)

3
2

 .     
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Ex.   Show that the normal curvature of any curve on a sphere of radius 𝑅 is ±
1

𝑅
 .  

 

 Using the previous example, we know: 

𝜅𝑛 =
𝐿(
𝑑𝑢
𝑑𝑡
)
2
+2𝑀(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝑁(

𝑑𝑣
𝑑𝑡
)
2

𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2  .     

 

 For a sphere of radius 𝑅, using spherical coordinates, the first fundamental 

            form is: 

(
𝑅2 0
0 𝑅2 sin2 𝜑

)   

                     (We calculated this for 𝑅 = 1 earlier. A similar calculation gives this result.)  

 

 and the second fundamental form (as we calculated) is: 

(
−𝑅 0
   0 −𝑅 sin2 𝜑

) . 

 

𝜅𝑛 = 
−𝑅(𝑢′)

2
−𝑅sin2𝜑(𝑣′)

2

𝑅2(𝑢′)2+𝑅2 sin2𝜑(𝑣′)2
= −

1

𝑅
 .   

 

         If we switch the orientation of the sphere by taking −�⃗⃗�  instead of �⃗⃗� , the 

           first fundamental form is unchanged but the second fundamental is  

           multiplied by −1.  

 

          So If we reverse the orientation of the sphere we get:                                   

                                   𝜅𝑛 =  
𝑅(𝑢′)

2
+𝑅 sin2𝜑(𝑣′)

2

𝑅2(𝑢′)2+𝑅2 sin2𝜑(𝑣′)2
=
1

𝑅
 . 
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Ex.  Take the unit sphere parametrized by  

          Φ⃗⃗⃗ (𝑢, 𝑣) = (𝑐𝑜𝑠𝑣(𝑠𝑖𝑛𝑢), 𝑠𝑖𝑛𝑣(𝑠𝑖𝑛𝑢), 𝑐𝑜𝑠𝑢);      

                 where:  0 ≤ 𝑢 ≤ 𝜋  and  0 ≤ 𝑣 ≤ 2𝜋. 

        Now consider the set of circles on this sphere which are the image 

         under Φ⃗⃗⃗  of 𝑢(𝑡) = 𝑐, 𝑣(𝑡) = 𝑡,  where 0 ≤ 𝑡 ≤ 2𝜋 and 𝑐 is a 

         constant with 0 < 𝑐 < 𝜋.  Calculate the geodesic curvature, 𝜅𝑔, 

        the normal curvature, 𝜅𝑛, and the curvature, 𝜅, at any point on the 

         circles.  Show that 𝜅2 = 𝜅𝑛
2 + 𝜅𝑔

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φ⃗⃗⃗ (𝑐, 𝑡)  
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Let's start with the following formulas: 

𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2
)

3
2

        

 

𝜅𝑛 =
𝐿(
𝑑𝑢
𝑑𝑡
)
2
+2𝑀(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝑁(

𝑑𝑣
𝑑𝑡
)
2

𝐸(
𝑑𝑢
𝑑𝑡
)
2
+2𝐹(

𝑑𝑢
𝑑𝑡
)(
𝑑𝑣
𝑑𝑡
)+𝐺(

𝑑𝑣
𝑑𝑡
)
2      

 

             𝜅 =
‖𝛾′′×𝛾′‖

‖𝛾′‖3
 . 

 

To calculate 𝜅𝑔 we need to know 𝛾′, 𝛾′′, �⃗⃗� (𝑡), 𝑢′(𝑡), 𝑣′(𝑡), 𝐸, 𝐹, and 𝐺. 

 

𝛾(𝑡) is the image of 𝛼(𝑡) = (𝑢(𝑡), 𝑣(𝑡)) = (𝑐, 𝑡) under Φ⃗⃗⃗ . 

        𝛾(𝑡) = Φ⃗⃗⃗ (𝑐, 𝑡) = (𝑐𝑜𝑠𝑡(𝑠𝑖𝑛𝑐), 𝑠𝑖𝑛𝑡(𝑠𝑖𝑛𝑐), 𝑐𝑜𝑠𝑐) 

        𝛾′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, (𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, 0) 

        𝛾′′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡,−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, 0). 

 

�⃗⃗� (𝑡) is the unit normal on the sphere at 𝛾(𝑡).  Recall that: 

                                 �⃗⃗� = 
(Φ⃗⃗⃗ 𝑢×Φ⃗⃗⃗ 𝑣)

‖Φ⃗⃗⃗ 𝑢×Φ⃗⃗⃗ 𝑣‖
 . 

We saw in an earlier calculation that for the unit sphere this becomes: 

              �⃗⃗� (𝑢, 𝑣) = (𝑐𝑜𝑠𝑣(𝑠𝑖𝑛𝑢), 𝑠𝑖𝑛𝑣(𝑠𝑖𝑛𝑢), 𝑐𝑜𝑠𝑢).  
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So when 𝑢(𝑡) = 𝑐, 𝑣(𝑡) = 𝑡  we get: 

                     �⃗⃗� (𝑡) = (𝑐𝑜𝑠𝑡(𝑠𝑖𝑛𝑐), 𝑠𝑖𝑛𝑡(𝑠𝑖𝑛𝑐), 𝑐𝑜𝑠𝑐) 

       �⃗⃗� (𝑡) × 𝛾′(𝑡) = (−(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑐𝑜𝑠𝑡, −(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑠𝑖𝑛𝑡, sin2 𝑐) . 

(the above comes from a straight forward calculation of �⃗⃗� (𝑡) × 𝛾′(𝑡)). 

 

Now dot this result with 𝛾′′(𝑡) to get: 

 𝛾′′(𝑡) ∙ (�⃗⃗� (𝑡) × 𝛾′(𝑡)) 

                                            = (−(𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡,−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, 0) 

                                                      ∙ (−(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑐𝑜𝑠𝑡,−(𝑠𝑖𝑛𝑐)(𝑐𝑜𝑠𝑐)𝑠𝑖𝑛𝑡, sin2 𝑐) 

                                            = (sin2 𝑐)(𝑐𝑜𝑠𝑐).  

                      

We also know from an earlier calculation that for this parametrization of the unit 

sphere the first fundamental form is: 

                     (
1 0
0 sin2 𝑢

)    

so  𝐸 = 1, 𝐹 = 0, 𝐺 = sin2 𝑢 = sin2 𝑐.  

 

Finally, 𝑢(𝑡) = 𝑐  so  𝑢′(𝑡) = 0 

            𝑣(𝑡) = 𝑡   so   𝑣′(𝑡) = 1. 

 

Plugging into the formula for 𝜅𝑔 we get:   

            𝜅𝑔 =
𝛾′′(𝑡)∙(�⃗⃗� ×𝛾′(𝑡))

(𝐸(
𝑑𝑢

𝑑𝑡
)
2
+2𝐹(

𝑑𝑢

𝑑𝑡
)(
𝑑𝑣

𝑑𝑡
)+𝐺(

𝑑𝑣

𝑑𝑡
)
2
)

3
2

=
(sin2 𝑐)𝑐𝑜𝑠𝑐

(𝑠𝑖𝑛2𝑐)
3
2

= cot(𝑐) .      
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To calculate the normal curvature, 𝜅𝑛, we need 𝑢′, 𝑣′, 𝐸, 𝐹, 𝐺, which we have 

already calculated, as well as, 𝐿,𝑀,𝑁. 

However, we know from the previous example that 𝜅𝑛 = ±1 (−1 for this 

parametrization), depending on which direction we take for the unit normal.  In 

either case, 𝜅𝑛
2 = 1. 

 

Finally, to calculate the curvature, 𝜅, we need to find ‖𝛾′′ × 𝛾′‖, and ‖𝛾′‖. We 

calculated earlier that: 

        𝛾′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, (𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡, 0) 

        𝛾′′(𝑡) = (−(𝑠𝑖𝑛𝑐)𝑐𝑜𝑠𝑡,−(𝑠𝑖𝑛𝑐)𝑠𝑖𝑛𝑡, 0). 

 

So  𝛾′′ × 𝛾′ = (sin2 𝑐)�⃗�    and thus  ‖𝛾′′ × 𝛾′‖ = sin2 𝑐. 

‖𝛾′‖ = √(sin2 𝑐) sin2 𝑡 + (sin2 𝑐) cos2 𝑡 = 𝑠𝑖𝑛𝑐 .   

 

Thus we have: 

𝜅 =
‖𝛾′′×𝛾′‖

‖𝛾′‖
3 =

sin2 𝑐

sin3 𝑐
  = csc(𝑐)      (notice this is 1/(radius of circle))         

 

So 𝜅 = csc(𝑐),   𝜅𝑛 = ±1, and   𝜅𝑔 = cot(𝑐) and we have: 

𝜅𝑛
2 + 𝜅𝑔

2 = 1 + cot2 𝑐 = csc2 𝑐 = 𝜅2 . 


