Normal Curvature and Geodesic Curvature

The shape of a surface will clearly impact the curvature of the curves on the surface. For example, it's possible for a curve in a plane or on a cylinder to have zero curvature everywhere (i.e. it's a line or a portion of a line). However, it's not possible for a curve on a sphere to have zero curvature everywhere. So one way to measure how much a surface curves is by examining the curvature of the curves on the surface, this will lead us to the second fundamental form.

Let γ be a unit speed curve on an oriented surface, S. Then, $\gamma'(s)$ is a unit vector that is tangent to the surface. Thus, $\gamma'(s)$ is perpendicular to the unit normal vector, \vec{N} , of S. So $\gamma'(s)$, \vec{N} , and $\vec{N} \times \gamma'(s)$ are mutually perpendicular unit vectors.

Since $\gamma' \cdot \gamma' = 1$, by differentiating this equation we get:

$$\gamma^{\prime\prime}(s)\cdot\gamma^{\prime}(s)=0.$$

Thus, $\gamma''(s)$ is perpendicular to $\gamma'(s)$ and must lie in the plane spanned by \vec{N} and $\vec{N} \times \gamma'(s)$. So we can write:

$$\gamma''(s) = a\vec{N} + b\left(\vec{N} \times \gamma'(s)\right).$$

Def. We define $a = \kappa_n = ext{ the normal curvature of } \gamma$

 $b=\kappa_g=$ the geodesic curvature of γ

so:

$$\gamma^{\prime\prime}(s) = \kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \gamma^{\prime}(s) \right).$$

Notice that if we replace \vec{N} with $-\vec{N}$ (the other unit normal of *S*) the normal and geodesic curvature also change signs.

Proposition:
$$\kappa_n = \gamma''(s) \cdot \vec{N}$$

 $\kappa_g = \gamma''(s) \cdot (\vec{N} \times \gamma'(s))$
 $\kappa^2 = \kappa_n^2 + \kappa_g^2$; where κ = curvature of γ
and
 $\kappa_n = \kappa \cos \psi$, $\kappa_g = \pm \kappa \sin \psi$

where ψ is the angle between \vec{N} and the principal normal \vec{n} .

Recall that the principal normal, \vec{n} , is defined by $\vec{n} = \frac{1}{\kappa(s)} \gamma''(s)$.

Proof:

$$\gamma''(s) = \kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \gamma'(s) \right)$$

$$\gamma^{\prime\prime}(s) \cdot \vec{N} = \left(\kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \gamma^{\prime}(s)\right)\right) \cdot \vec{N} = \kappa_n$$

$$\gamma^{\prime\prime}(s) \cdot \left(\vec{N} \times \gamma^{\prime}(s)\right) = \left(\kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \gamma^{\prime}(s)\right)\right) \cdot \left(\vec{N} \times \gamma^{\prime}(s)\right) = \kappa_g$$

$$\begin{split} \kappa^2 &= \|\gamma^{\prime\prime}(s)\|^2 = \left(\kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \gamma^{\prime}(s)\right)\right) \cdot \left(\kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \gamma^{\prime}(s)\right)\right) \\ &= \kappa_n^2 + \kappa_g^2 \,. \end{split}$$

Since $\kappa(s)\vec{n} = \gamma''(s)$, we have:

$$\kappa(s)\vec{n} = \kappa_n \vec{N} + \kappa_g \left(\vec{N} \times \sigma'(s)\right)$$

Given any two vectors, \vec{w}_1 and \vec{w}_2 , $\vec{w}_1 \cdot \vec{w}_2 = \|\vec{w}_1\| \|\vec{w}_2\| \cos \psi$ where ψ is the angle between \vec{w}_1 and \vec{w}_2 .

So since
$$\kappa_n = \gamma''(s) \cdot \vec{N}$$

= $(\kappa(s))\vec{n} \cdot \vec{N}$
 $\kappa_n = \kappa \cos \psi$

where ψ is the angle between the principal normal, \vec{n} , and \vec{N} .

$$\kappa_{g} = \gamma''(s) \cdot \left(\vec{N} \times \gamma'(s)\right)$$

$$= \left(\kappa(s)\right)\vec{n} \cdot \left(\vec{N} \times \gamma'(s)\right)$$

$$= \kappa \cos\left(\frac{\pi}{2} - \psi\right) \text{ or } \kappa \cos\left(\frac{\pi}{2} + \psi\right); \quad \text{depending on } \vec{n}$$

$$\vec{n} = \frac{1}{\kappa}\gamma''(s)$$

$$\vec{w} = \frac{\pi}{2}$$

$$\psi = \frac{\pi}{2}$$

$$\psi = \frac{\pi}{2}$$

$$\vec{n} = \frac{1}{\kappa}\gamma''(s)$$

$$\vec{n} = \frac{1}{\kappa}\gamma''(s)$$

Proposition: If γ is a unit speed curve on an oriented surface parametrized by $\vec{\Phi}: U \subseteq \mathbb{R}^2 \to S$ and $\gamma(s) = \vec{\Phi}(u(s), v(s))$, then $\kappa_n = \langle W(\gamma'(s)), \gamma'(s) \rangle$ or $\kappa_n = L\left(\frac{du}{ds}\right)^2 + 2M\left(\frac{du}{ds}\right)\left(\frac{dv}{ds}\right) + N\left(\frac{dv}{ds}\right)^2$

where $L = \vec{\Phi}_{uu} \cdot \vec{N}$, $M = \vec{\Phi}_{uv} \cdot \vec{N} = \vec{\Phi}_{vu} \cdot \vec{N}$, and $N = \vec{\Phi}_{vv} \cdot \vec{N}$.

Proof: $\gamma'(s)$ is tangent to S so it's perpendicular to \vec{N} . Hence,

$$\overrightarrow{N} \cdot \gamma'(s) = 0.$$
 Differentiating we
 $\overrightarrow{N} \cdot \gamma''(s) + \overrightarrow{N}' \cdot \gamma(s) = 0$
 $\kappa_n = \overrightarrow{N} \cdot \gamma''(s) = -\overrightarrow{N}' \cdot \gamma'(s).$

But we know:

get:

$$\vec{N}'(s) = \frac{d}{ds} \left(\tilde{G}(\gamma(s)) \right) = -W(\gamma'(s)).$$

So: $\kappa_n = W(\gamma'(s)) \cdot \gamma'(s).$

We saw earlier this is just: $\kappa_n = L \left(\frac{du}{ds}\right)^2 + 2M \left(\frac{du}{ds}\right) \left(\frac{dv}{ds}\right) + N \left(\frac{dv}{ds}\right)^2$

Thus, any two curves on a surface, S, that go through the point $p \in S$ and have parallel tangent vectors at $p \in S$ must have the same normal curvature at $p \in S$.

Ex. Let γ be a regular curve but not necessarily unit speed. Show that if

 $\vec{\Phi}: U \subseteq \mathbb{R}^2 \to S$ is a parametrization of S and $\gamma(t) = \vec{\Phi}(u(t), v(t))$, then:

$$\kappa_n = \frac{L\left(\frac{du}{dt}\right)^2 + 2M\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + N\left(\frac{dv}{dt}\right)^2}{E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2}$$

where $E = \overrightarrow{\Phi}_u \cdot \overrightarrow{\Phi}_u$, $F = \overrightarrow{\Phi}_u \cdot \overrightarrow{\Phi}_v$, $G = \overrightarrow{\Phi}_v \cdot \overrightarrow{\Phi}_v$ (i.e. the denominator is $\gamma'(t) \cdot \gamma'(t) = \left(\frac{ds}{dt}\right)^2$) and

$$\kappa_g = \frac{\gamma^{\prime\prime}(t) \cdot \left(\vec{N} \times \gamma^{\prime}(t)\right)}{\left(E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2\right)^{\frac{3}{2}}}$$

We know that if γ is unit speed, then:

$$\kappa_n = L\left(\frac{du}{ds}\right)^2 + 2M\left(\frac{du}{ds}\right)\left(\frac{dv}{ds}\right) + N\left(\frac{dv}{ds}\right)^2.$$

By the chain rule:

$$\frac{du}{dt} = \frac{du}{ds}\frac{ds}{dt}$$

so: $\frac{du}{ds} = \frac{\frac{du}{dt}}{\left(\frac{ds}{dt}\right)}$ and $\frac{dv}{ds} = \frac{\frac{dv}{dt}}{\left(\frac{ds}{dt}\right)}$.

Thus we have:

$$\kappa_{n} = L\left(\frac{\frac{du}{dt}}{\left(\frac{ds}{dt}\right)}\right)^{2} + 2M\left(\frac{\frac{du}{dt}}{\left(\frac{ds}{dt}\right)}\right)\left(\frac{\frac{dv}{dt}}{\left(\frac{ds}{dt}\right)}\right) + N\left(\frac{\frac{dv}{dt}}{\left(\frac{ds}{dt}\right)}\right)^{2}$$
$$= \frac{1}{\left(\frac{ds}{dt}\right)^{2}}\left(L\left(\frac{du}{dt}\right)^{2} + 2M\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + N\left(\frac{dv}{dt}\right)^{2}\right)$$
and
$$\frac{s}{t}^{2} = \left(\gamma'(t) \cdot \gamma'(t)\right) = E\left(\frac{du}{dt}\right)^{2} + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^{2}.$$
$$L\left(\frac{du}{dt}\right)^{2} + 2M\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + N\left(\frac{dv}{dt}\right)^{2}$$

$$\left(\frac{ds}{dt}\right)^2 = \left(\gamma'(t) \cdot \gamma'(t)\right) = E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2.$$

$$\implies \kappa_n = \frac{L\left(\frac{du}{dt}\right)^2 + 2M\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + N\left(\frac{dv}{dt}\right)^2}{E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2}.$$

For a unit speed curve we have:

$$\kappa_g = \gamma^{\prime\prime}(s) \cdot \left(\vec{N} \times \gamma^{\prime}(s) \right)$$

By the chain rule:

$$\frac{d\gamma}{ds} = \frac{\frac{d\gamma}{dt}}{\frac{ds}{dt}}$$
$$\frac{d^2\gamma}{ds^2} = \frac{\frac{ds\left(\frac{d}{ds}\left(\frac{d\gamma}{dt}\right)\right) - \left(\frac{d\gamma}{dt}\right)\left(\frac{d}{ds}\left(\frac{ds}{dt}\right)\right)}{\left(\frac{ds}{dt}\right)^2}$$

$$\frac{d^2\gamma}{ds^2} = \frac{\frac{ds}{dt} \left(\frac{d^2\gamma}{dt^2} \middle/ \frac{ds}{dt}\right) - \frac{d\gamma}{dt} \left(\frac{d^2s}{dt^2} \middle/ \frac{ds}{dt}\right)}{\left(\frac{ds}{dt}\right)^2}.$$

Now by substituting into the formula for κ_g :

$$\kappa_g = \frac{d^2 \gamma}{ds^2} \cdot \left(\vec{N} \times \frac{d\gamma}{ds}\right) = \left[\frac{\frac{ds}{dt}\left(\frac{d^2 \gamma}{dt^2}\right) - \left(\frac{d\gamma}{dt}\right)\left(\frac{d^2 s}{dt^2}\right)}{\left(\frac{ds}{dt}\right)^3}\right] \cdot \left(\vec{N} \times \frac{\frac{d\gamma}{dt}}{\frac{ds}{dt}}\right).$$

Since $\frac{d\gamma}{dt} \cdot \left(\vec{N} \times \frac{d\gamma}{dt} \right) = 0$, we get:

$$\kappa_g = \frac{\frac{ds}{dt} \left(\frac{d^2 \gamma}{dt^2}\right)}{\left(\frac{ds}{dt}\right)^3} \cdot \left(\frac{1}{\frac{ds}{dt}}\right) \left(\vec{N} \times \frac{d\gamma}{dt}\right) = \frac{\frac{d^2 \gamma}{dt^2} \cdot \left(\vec{N} \times \frac{d\gamma}{dt}\right)}{\left(\frac{ds}{dt}\right)^3}$$

 $\left(\frac{ds}{dt}\right)^2 = E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2$ so we can write:

$$\kappa_g = \frac{\gamma''(t) \cdot \left(\vec{N} \times \gamma'(t)\right)}{\left(E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2\right)^{\frac{3}{2}}}.$$

Ex. Show that the normal curvature of any curve on a sphere of radius R is $\pm \frac{1}{R}$.

Using the previous example, we know:

$$\kappa_n = \frac{L\left(\frac{du}{dt}\right)^2 + 2M\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + N\left(\frac{dv}{dt}\right)^2}{E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2}.$$

For a sphere of radius R, using spherical coordinates, the first fundamental form is:

$$\begin{pmatrix} R^2 & 0\\ 0 & R^2 \sin^2 \varphi \end{pmatrix}$$

(We calculated this for R = 1 earlier. A similar calculation gives this result.)

and the second fundamental form (as we calculated) is:

$$\begin{pmatrix} -R & 0 \\ 0 & -R\sin^2\varphi \end{pmatrix}.$$

$$\kappa_n = \frac{-R(u')^2 - R\sin^2\varphi(v')^2}{R^2(u')^2 + R^2\sin^2\varphi(v')^2} = -\frac{1}{R}.$$

If we switch the orientation of the sphere by taking $-\vec{N}$ instead of \vec{N} , the first fundamental form is unchanged but the second fundamental is multiplied by -1.

So If we reverse the orientation of the sphere we get:

$$\kappa_n = \frac{R(u')^2 + R\sin^2\varphi(v')^2}{R^2(u')^2 + R^2\sin^2\varphi(v')^2} = \frac{1}{R}.$$

Ex. Take the unit sphere parametrized by

$$\vec{\Phi}(u, v) = (cosv(sinu), sinv(sinu), cosu);$$

where: $0 \le u \le \pi$ and $0 \le v \le 2\pi$.

Now consider the set of circles on this sphere which are the image under $\overrightarrow{\Phi}$ of u(t) = c, v(t) = t, where $0 \le t \le 2\pi$ and c is a constant with $0 < c < \pi$. Calculate the geodesic curvature, κ_g , the normal curvature, κ_n , and the curvature, κ , at any point on the circles. Show that $\kappa^2 = \kappa_n^2 + \kappa_g^2$.

Let's start with the following formulas:

$$\begin{aligned} \kappa_g &= \frac{\gamma''(t) \cdot \left(\vec{N} \times \gamma'(t)\right)}{\left(E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2\right)^{\frac{3}{2}}} \\ \kappa_n &= \frac{L\left(\frac{du}{dt}\right)^2 + 2M\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + N\left(\frac{dv}{dt}\right)^2}{E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2} \\ \kappa &= \frac{\|\gamma'' \times \gamma'\|}{\|\gamma'\|^3}. \end{aligned}$$

To calculate κ_g we need to know $\gamma', \gamma'', \vec{N}(t), u'(t), v'(t), E, F$, and G.

$$\gamma(t)$$
 is the image of $\alpha(t) = (u(t), v(t)) = (c, t)$ under $\vec{\Phi}$.
 $\gamma(t) = \vec{\Phi}(c, t) = (cost(sinc), sint(sinc), cosc)$
 $\gamma'(t) = (-(sinc)sint, (sinc)cost, 0)$
 $\gamma''(t) = (-(sinc)cost, -(sinc)sint, 0).$

 $ec{N}(t)$ is the unit normal on the sphere at $\gamma(t)$. Recall that:

$$\vec{N} = \frac{(\vec{\Phi}_u \times \vec{\Phi}_v)}{\|\vec{\Phi}_u \times \vec{\Phi}_v\|}.$$

We saw in an earlier calculation that for the unit sphere this becomes:

$$\overline{N}(u,v) = (cosv(sinu), sinv(sinu), cosu).$$

So when u(t) = c, v(t) = t we get:

$$\vec{N}(t) = (cost(sinc), sint(sinc), cosc)$$

$$\vec{N}(t) \times \gamma'(t) = (-(sinc)(cosc)cost, -(sinc)(cosc)sint, sin^2 c).$$

(the above comes from a straight forward calculation of $\vec{N}(t) \times \gamma'(t)$).

Now dot this result with $\gamma^{\prime\prime}(t)$ to get:

$$\begin{split} \gamma''(t) \cdot \left(\vec{N}(t) \times \gamma'(t) \right) \\ &= (-(sinc)cost, -(sinc)sint, 0) \\ &\cdot (-(sinc)(cosc)cost, -(sinc)(cosc)sint, \sin^2 c) \\ &= (\sin^2 c)(cosc). \end{split}$$

We also know from an earlier calculation that for this parametrization of the unit sphere the first fundamental form is:

$$\begin{pmatrix} 1 & 0 \\ 0 & \sin^2 u \end{pmatrix}$$

so E = 1, F = 0, $G = \sin^2 u = \sin^2 c$.

Finally, u(t) = c so u'(t) = 0v(t) = t so v'(t) = 1.

Plugging into the formula for κ_g we get:

$$\kappa_g = \frac{\gamma''(t) \cdot \left(\vec{N} \times \gamma'(t)\right)}{\left(E\left(\frac{du}{dt}\right)^2 + 2F\left(\frac{du}{dt}\right)\left(\frac{dv}{dt}\right) + G\left(\frac{dv}{dt}\right)^2\right)^{\frac{3}{2}}} = \frac{(\sin^2 c) cosc}{(sin^2 c)^{\frac{3}{2}}} = \cot(c) \,.$$

To calculate the normal curvature, κ_n , we need u', v', E, F, G, which we have already calculated, as well as, L, M, N.

However, we know from the previous example that $\kappa_n = \pm 1$ (-1 for this parametrization), depending on which direction we take for the unit normal. In either case, $\kappa_n^2 = 1$.

Finally, to calculate the curvature, κ , we need to find $\|\gamma'' \times \gamma'\|$, and $\|\gamma'\|$. We calculated earlier that:

$$\gamma'(t) = (-(sinc)sint, (sinc)cost, 0)$$

$$\gamma''(t) = (-(sinc)cost, -(sinc)sint, 0).$$

So
$$\gamma'' \times \gamma' = (\sin^2 c) \vec{k}$$
 and thus $\|\gamma'' \times \gamma'\| = \sin^2 c$.
 $\|\gamma'\| = \sqrt{(\sin^2 c) \sin^2 t + (\sin^2 c) \cos^2 t} = sinc$.

Thus we have:

$$\kappa = \frac{\left\| \gamma'' \times \gamma' \right\|}{\left\| \gamma' \right\|^3} = \frac{\sin^2 c}{\sin^3 c} = \csc(c) \quad \text{(notice this is 1/(radius of circle))}$$

So $\kappa = \csc(c)$, $\kappa_n = \pm 1$, and $\kappa_g = \cot(c)$ and we have: $\kappa_n^2 + \kappa_g^2 = 1 + \cot^2 c = \csc^2 c = \kappa^2$.