The Gauss and Weingarten Maps

A second approach to defining curvature of an oriented surface (a surface
is orientable if given any two coordinate patches @;:U; — S, CD]-: U; - § then

Ny,; = Ny, j forany p € U; N U;) is to consider its unit normal, N. The way N

varies as we move to nearby points on the surface reflects the curvature of S. If

— —
N varies “slowly”, then the curvature is “small.” If N varies “quickly”, then the
curvature is “large.”

We can define a mapping of a smooth, regular surface, S, into the unit sphere,
S?, by:

G:S > S?
p - va = unitnormalatp € S.
Since ﬁp is a unit vector, it represents a pointin SZ2.
G is called the Gauss map.

In practice we calculate this as follows: if p = ®(uy, V), then

~ (= (DX Dy)(ug,V0)
G (q)(uO'vO)) B ||(5ux5v)(u0,vo)|| .



f®: U € R2 - S is a coordinate patch for S and G: S — S? is the
Gauss map, then G o ®:U C R? > S2,

Let's call G o @ the mapping N: U € R% - S2. Thusif ®(uy, vy) =D € S,

then N (1, Vg) = Np, the unit normal to the surface S at p.




Notice that for all (u, v) € U, N(u,v) - N(u,v) = 1. Differentiating
this equation with respect to U and v we get:
ﬁu-ﬁ+ﬁ-ﬁu=0 or ﬁ-ﬁu=0 (%)
Similarly:

]V-]szo (%)

In particular, if $(uo,v0) =p € Sand G(p) = q € S?, then
N(ug, vo) = q € S2. since N(ug, V) is the unit normal to S at p, equations
(¥) and (*%) say that the vectors N, (Ug, V) and N,, (g, Vo) are both
perpendicular to the unit normal to S at p (However, ﬁu(uo, V) and/or
N, (ug, Vo) could be 0 ).

Hence, both ﬁu (ug, vg) and ﬁv (ug, Vg) lie in the tangent plane to S at
D, TpS. But N:U S R? - S2%isa parametrization for a subset of S2. Thus,

ﬁu(uo, Vo) and ﬁv(uo, V) lie in the tangent plane of S? at q.
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Assuming that N’u (ug, vy), IV,, (ug, V) together span the tangent plane of S at
p and the tangent plane of S? at 6(p) =q:

TpS = Tg(p) (52)

i.e. they are the same plane.

The rate at which the unit normal to S at p, Np, varies is measured by the

derivative (or differential) of G.
DpG:TpS = Ty (SP).

As just noted, T, = T(;(p)(SZ) so we can think of Dpé as mapping
T, (S) into T, (S). As we know, given a vector W € T, S we define:

D,G(W) =W € T¢)(S?) =T,S
by taking any curve, ¥ on S, passing through p € S (i.e. y(ty) = p) with
y'(to) = W, thenw = (G o) (to).

In particular, take the curve in U defined by (t, V) and then project it
onto S by taking ¥, (t) = 5(15, Vo). Then ¥4 (to) = Eﬁu(uo, Vo) iftg = Up.

DpG (v1(to))
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then: D, (B, (u0,m)) = 75 (G < B)e.v0))|,_, = (M)

- N d(t)

= d
u g =t + Nva (constant)

Dpé (6u(u0, vo)) - ﬁu(uo, vo).

Similarly, take the curve in U defined by (U, t) and project it onto S by
Y2 () = ®(ug, t). Then, y;(tg) = Py, (g, Vo) if £y = vy.

((G o @) (o, 1))

(Nwo,0)| = Ny(uo, vo)

—t0

ng (5,, (ug, vo)) = o

4
dt
4
dt
D,G (Eﬁv(uu, vu)) = N, (ug, vo).

Hence given any vector wE TpS, we can write it as:

W= a@u(uo, Vo) + bgv(uol Vo)-

Thus:
Dpé(W) = DpG~ (aa))u(uOt vO) + ba))v(uol UO))
= aDpG (au(uO, UO)) + pré (61)(1’[0; UO))

= aﬁu(uo,vo) + bﬁv(uo,vo).

t=t0



Def. Letp € S, S is a regular smooth surface. The Weingarten map, W), s of S
at p, is defined by
Wps =—D,G

(the minus sign will reduce the number of minus signs later).

We want to show that the second fundamental form:

L du(wy))du(w,) + M du(W,)dv(W,) + M du(w,)dv(w,)
+ N dv(w,)dv(w,)

(where Wy, W, € T,S) is the same as:

< W, s(W,),w, > (<, > isthe dot product).



To do that we need the following lemma:

Lemma: Let @ (u, v) be a surface patch with unit normal N (u, v), then

w Py =—L
ﬁu'avz_)v E))uz_l\/l
N, -®,=—N

Note: We will also need these relationships later when we want to calculate an
expression for W, s = —Dpé.

Proof: Since zﬁu and zﬁv are tangent vectors N - 8u =0andN - ?6,, = 0.

Differentiating each equation by © and v, we get:

N, @, +N By, =0 N, @, +N-®,, =0
Ny ®,=-N-®y,=-L N, ®,=-N-,, =-M
Ny, @y +N-Dy, =0 N, - ®,+N- @, =0
Ny, ®,=-N-®,=-M N, ®,=-N-®,, =—-N

Recall that for a vector W = aESu + bzﬁv € T,S, we defined

du(w) = a and dv(w) = b.



To show that:

L du(wy)du(w,) + M du(w)dv (W,) + M du(w,)dv(w,)
+ N dv(w,)dv(w,)

equals < W), ((W;), W, >, we just need to show this for basis vectors @, and

E))v for T, S.

—

Casel: w; = w, = @,

L du(zﬁu)du(gu) + M du(?ﬁu)dv(zﬁu) +M du(?ﬁu)dv(?ﬁu)
+ Ndv(®,)dv(®,) = L

Since, du(_CEu) =1, dv(EBu) =0

< W,5(®y), By > =< —D,G(D,), D, >=—< N, &, >=L.

—

Case2: Wy = @, W, =D,
L du(®,)du(®,) + M du(®,)dv(d,) + M du(®,)dv(d,,)
+ Ndv(gu)dv(a)v) =M

—

< W,5(®y), @y > =< —D,G(®,),®, >=—< N, &, >= M.

Similarly, when w; = @, and W, = ®,,.



—> g —> g
Case3:w; = 9, w, =P,

L du(?ﬁv)du(zﬁv) + M du(?ﬁv)dv(?ﬁv) +M du(zﬁv)dv(?ﬁv)
+ Ndv(®,)dv(®,) = N

< W,5(®,), @, > =< -D,G(®,),®, >=< —N,, &, >=N.

Ex. Calculate the Gauss map for the paraboloid z = x? + yz. Find its image in

S2.

We can parametrize z = x2 + y2 by
@ (u,v) = (u,v,u? + v?)
@, (u,v) = (1,0,2u)
@, (u,v) = (0,1,2v)

O, XDP, =11 0 2ul=-2ul—-2vi+k
0 1 2v

[ @, x ®,|| = VauZ + 4vZ + 1

IV( ) (-2u,—-2v,1)
u,v) =
V1i+4u2+4p2

(-2u,—2v,1)

G(u,v,u?+ v?) = .
( ) V1+4u2+4v2
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If we change to cylindrical coordinates:

(—2rcosf,—-2rsin6,1)

G(r,0,z) =
( ) Var2+1
1

= = i - < (0] .

Soz=f(r) T is 1-1 from 0 <r < o onto (0,1]
1
So f 0<zy <1, therei ique 17 h that —— = z,.
o for any 0 < ere is a unique 1 such tha prea] 0
—215cos 0,—21rysin 0,1
Forthatry, 0 < 0 < 2m makes( 2 2 )a circle.
Jare2+1

Thus, the image of the Gauss map is the upper hemisphere, not including
the equator in the x-y plane.
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Ex. Calculate the Gauss map for the cylinder in R3 given by x? + yz =1.

What is the image of the Guass map in $2?

a(u,v) = (cosu,sinu,v) ; 0<u<2mveER

—

&, = (—sinu,cosu,0)

@, =(0,0,1)

-

— — i) -7 k N . >
Py X Py, = [—sinu cosu 0f=(cosu)i+ (sinu)j.
0 0 1

This is already a unit vector, so we can write:
G(cosu,sinu,v) = (cosu,sinu,0); 0<u < 2m.

Thus the image of the Gauss map is the circle x> + y2 =1, z = 0.

Notice that in this example, the image of the Gauss map is not a
regular surface.
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Ex. Find the image of the Gauss map for Zz = \/1 + x2 + yz (the upper

half of a 2 sheeted hyperboloid).

We can parametrize Z = \/1 + x? + y? by:

— 1
d(u,v) = (u, v,(1+u?+ vZ)Z).

Then we have:

a)u(u: U) = (1; O; ;1) 6,,(11, v) - (O, 1; ;1)

(1+u2+v2)2 (1+u2+v?)2
7k
u
- 1 0 ———= —u > v S 7
P, XD, = (1+u2+v2)z| = il — 1)+ k
v (1+u?+v?)2 (1+u?+4v?)2
0O 1 ———
(1+u2+v?2)2
o o, XD
Nwv) = ==
|®u x @,
—-u v
< <, -, 1>
(1+u2+v2)2  (1+u2+v2)2
2 2
u v
\/ o2tz
1+u?+v2  1+u?+v
_ —-u —v Vi+u?+v?
=< 1 19 1 >

(1+2u2+2v2)2 (14+2u2+2v?)2  (1+2u?2+2v2)2

1
=G (u, v, (14 u® + vz)i).
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In cylindrical coordinates we have:

~ — —rcf 2
G(T‘, H,W) _ < rcosf rsinf v 1+r >

Ji+2r2' J1+202 14202 7

V1472 1+7?

1 1
7= f(r) = L _1(4 )
So f) Nirers by division we get T2z = 5 ( + Toz)

- \[% (1 + 1+12r2)

which is a strictly decreasing function of ¥ = 0 (f'(r) <0, r>0).

. 1
lim |-
r—ooo\l 2

1 )_ﬁ

14272

(1+

=,
Soz = f(r)isal-1mapofr = 0 onto (g ,1].

—19c0S8 —1psinf® /14712

\/1+27"02 ’ \/1+2T02 ’ \/1+2T02

> isacircle.

And for each g <1r=<1 <

2
Thus the image of the Gauss map is the points in S? such that g <z<1
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Ex. Find the image of the Gauss map for the helicoid given by:
Eﬁ(u,v) = (vcosu,vsinu,u); u€eR, —+3<v<A3.

ED)u = (—vsinu,vcosu,1) 51, = (cosu, sinu, 0)
o i ik . L
Dy X @y = |_ysinu veosu 1| = —(sinw)+ (cosu)j—vk.
cosu sinu 0
= D, XD <-sinu,cosu,—v> ~
Nu,v) = === " = G(vcosu, vsinu, u).
(u, v) @y x| V1+v2 ( g )

Z=f(v)=\/1_+_1;2; —V/3 < v <3
f'(v) =— ! 5 < 0 = f(v) is strictly decreasing for all v.
(1+v2)2
| 3 V3
Since f(—\/§) = f(\/g) = -
—/3

= <Z<§ when—\/§<v<\/§.

2

For any fixed vy, — V3 < Vo < V3,

<-sinu,cosu,—vy>

is a circle.
4/ 1+1702
V3

-3
— Image of the Gauss map is the points in S? where T\/_ <z< -

G (vocosu, vysinu, u) =



Note: If we took v such that —o0 < v < 00, then the image of the Gauss map

would be S? minus the north and south poles.
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