One way to define a curve in the plane, \mathbb{R}^2 , is by saying a curve, $\mathcal C$, is the set of points:

$$
C = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = c\}
$$

Ex. a) $y = x^2 - 1$ (or $y - x^2 = -1$, here $f(x, y) = y - x^2$) b) $x^2 + y^2 = 4$ (here $f(x, y) = x^2 + y^2$)

A second way to define a curve is with parametric equations.

Def. A **parameterized curve** in \mathbb{R}^n is a map γ : $(a, b) \rightarrow \mathbb{R}^n$, for some a, b with

 $-\infty \le a < b \le \infty$, where $(a, b) = \{ t \in \mathbb{R} \mid a < t < b \}.$ Note: even though the curve γ is a vector function, we will write γ instead of $\vec{\gamma}$.

Ex. Any curve, \mathcal{C}_1 , in \mathbb{R}^2 of the form $y=f(x)$ or curve, \mathcal{C}_2 , of the form

 $x = g(y)$ can be given in parametric form by:

$$
C_1: \ \gamma_1(t) = (t, f(t))
$$

$$
C_2: \ \gamma_2(t) = (g(t), t)
$$

For example, $y = x^2$ can be parameterized by:

$$
\gamma_1(t)=(t,t^2)\,;\,-\infty < t < \infty
$$

and $x = e^y$ can be parameterized by:

$$
\gamma_2(t)=(e^t,t); \ -\infty < t < \infty.
$$

It's worth noting that there are an infinite number of ways to parametrize the same curve:

Ex. The parabola $y = x^2$ can be parametrized by:

a)
$$
\gamma_1(t) = (t, t^2)
$$
; $-\infty < t < \infty$
b) $\gamma_2(t) = (t^3, t^6)$; $-\infty < t < \infty$
c) $\gamma_3(t) = (2t - 1, (2t - 1)^2)$; $-\infty < t < \infty$.

In fact, $\gamma(t) = \big(\alpha(t), \big(\alpha(t)\big)^2\big)$ is a parametrization of $y = x^2$ as long as the range of $\alpha(t)$ is all real numbers.

However, notice that if we take: $\gamma_4(t)=(t^2,t^4)$; $\,-\infty < t < \infty$, we only get the portion of $y=x^2$ where $x\geq 0$ since $t^2\geq 0.$

Ex. Parametrize the circle $x^2 + y^2 = 1$.

There are an infinite number of ways to do this. Here are some examples:

a)
$$
\gamma_1(t) = (\cos t, \sin t)
$$
; $-\infty < t < \infty$
b) $\gamma_2(t) = (\cos 2t, \sin 2t)$; $-\infty < t < \infty$
c) $\gamma_3(t) = (\sin t, \cos t)$; $-\infty < t < \infty$.

In each case the graph of $\gamma_i(t)$ goes around the circle an infinite number of times.

However, "a" and "b" move in a counterclockwise direction while "c" moves in a clockwise direction as t increases.

In general, we can define a curve in \mathbb{R}^n by: γ : $(a,b)\to \mathbb{R}^n$

$$
\gamma(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t)).
$$

We will restrict our attention to curves where $d^m \gamma_i(t)$ $\frac{F_t(x)}{dt^m}$ exists for all $m \geq 1$

and all $t \in (a, b)$. These are called **smooth curves**.

Ex. Find tangent vectors to the following curves at $t = \frac{\pi}{2}$ $\frac{\pi}{2}$.

a) $\gamma_1(t) = (2 \cos t, 6 \sin t)$ (ellipse)

b)
$$
\gamma_2(t) = (2 \cos t, 2 \sin t, 5t)
$$
 (helix)

a)
$$
\gamma'_1(t) = (-2 \sin t, 6 \cos t);
$$

at $t = \frac{\pi}{2}$ we get:
 $\gamma'_1(\frac{\pi}{2}) = (-2 \sin \frac{\pi}{2}, 6 \cos \frac{\pi}{2}) = (-2, 0)$

So $(-2, 0)$ is the tangent vector to the ellipse:

$$
\gamma_1(t) = (2 \cos t, 6 \sin t)
$$
 at $t = \frac{\pi}{2}$.
\n $\gamma_1(\frac{\pi}{2}) = (2 \cos \frac{\pi}{2}, 6 \sin \frac{\pi}{2}) = (0, 6).$

b)
$$
\gamma'_{2}(t) = (-2 \sin t, 2 \cos t, 5)
$$

\n $\gamma'_{2}(\frac{\pi}{2}) = (-2 \sin \frac{\pi}{2}, 2 \cos \frac{\pi}{2}, 5) = (-2, 0, 5)$ $\gamma'_{2}(\frac{\pi}{2}) = (-2, 0, 5)$
\nSo $(-2, 0, 5)$ is the tangent vector to the helix:
\n $\gamma_{2}(t) = (2 \cos t, 2 \sin t, 5t)$ at $t = \frac{\pi}{2}$.
\n $\gamma_{2}(\frac{\pi}{2}) = (0, 2, \frac{5\pi}{2})$.

Notice that there is more information in a parametrized curve than there is if the curve is given as $y = f(x)$ or $x = g(y)$.

Ex. $x^2 + y^2 = 1$, $\gamma_1(t) = (\cos t, \sin t)$, $\gamma_2(t) = (\cos 2t, \sin 2t)$ all have the same graph in $\mathbb{R}^2.$ However, if we think of $\gamma_1(t)$ and $\gamma_2(t)$ as describing the path along which a particle is moving, then $\gamma^{}_1(t)$ and $\gamma^{}_2(t)$ not only tell us what points are on the graph but also the velocity (and acceleration) at any point on the graph.

Velocity vector= $\gamma'(t)$ Velocity vector $= {\gamma'}_1(t)=(-\sin t$, $\cos t)$ Velocity vector $=\gamma'{}_2(t)=(-2\sin 2t$, 2 $\cos 2t)$

We define
$$
||\gamma'(t)||
$$
 = **speed** of $\gamma(t)$ at t .
\n
$$
||\gamma'(t)|| = \sqrt{(-\sin t)^2 + (\cos t)^2} = 1
$$
\n
$$
||\gamma'(t)|| = \sqrt{(-2\sin 2t)^2 + (2\cos 2t)^2} = 2
$$

So γ_1 and γ_2 describe objects moving at different speeds along the same path.

Def. The **arc length** of a curve γ starting at $\gamma(t_0)$ is given by:

$$
s(t) = \int_{t_0}^t \|\gamma'(u)\| \ du.
$$

Ex. Find the arc length function for the logarithmic spiral:

 $\gamma(t) = (e^{kt} \cos t, e^{kt} \sin t)$

for $t > 0, k \neq 0$ a constant.

$$
\gamma'(t) = (-e^{kt} \sin t + ke^{kt} \cos t, e^{kt} \cos t + ke^{kt} \sin t)
$$

\n
$$
\gamma'(t) = (e^{kt}(k \cos t - \sin t), e^{kt}(k \sin t + \cos t))
$$

\n
$$
||\gamma'(t)||^2 = e^{2kt}(k \cos t - \sin t)^2 + e^{2kt}(k \sin t + \cos t)^2
$$

\n
$$
||\gamma'(t)||^2 = (k^2 + 1)e^{2kt}
$$

\n
$$
||\gamma'(t)|| = (\sqrt{k^2 + 1})e^{kt}
$$

$$
s(t) = \int_{u=t_0}^{u=t} \sqrt{k^2 + 1} e^{ku} du = \frac{\sqrt{k^2 + 1}}{k} e^{ku} \Big|_{u=t_0}^{u=t}
$$

$$
= \frac{\sqrt{k^2 + 1}}{k} (e^{kt} - e^{kt_0}).
$$

If we want to know the length of this curve between $t = 1$ and $t = 2$ we would get:

$$
L = \int_{t=1}^{t=2} \sqrt{k^2 + 1} e^{kt} dt = \frac{\sqrt{k^2 + 1}}{k} e^{kt} \Big|_{t=1}^{t=2}
$$

=
$$
\frac{\sqrt{k^2 + 1}}{k} (e^{2k} - e^k).
$$

Notice that the arc length function, $s(t) = \int_{t_1}^{t} ||\gamma'(u)||$ $\int_{t_0}^t$ $\|\gamma'(u)\| \, du$, has the

property (by the Fundamental Theorem of Calculus) that:

$$
\frac{ds}{dt} = \|\gamma'(t)\|.
$$

Def. If γ : $(a, b) \to \mathbb{R}^n$ is a parametrized curve, its speed at the point $\gamma(t)$ is $\|\gamma'(t)\|$, and γ is said to be a **unit speed curve** if $\gamma'(t)$ is a unit vector for all $t \in (a, b).$

Ex. $y(t) = (\cos t, \sin t)$ is a unit speed curve since

$$
\gamma'(t) = (-\sin t, \cos t) \text{ and } \|\gamma'(t)\| = \sqrt{\sin^2 t + \cos^2 t} = 1.
$$

Ex. Show $\gamma(t) = \left(\frac{4}{5}\right)$ $\frac{4}{5}$ cos t, 1 – sin t, – $\frac{3}{5}$ $\frac{5}{5}$ COS t) has unit speed and find its length between $t = 2$ and $t = 5$. $\gamma(t)$ 0.8 $0.6\,$ $y(5)$ 0.4 $\nu(2)$ 0.6 0.2 -0.8 -0.6 $-0.20.2$ -0.2 -0.4 -0.6

$$
\gamma'(t) = \left(-\frac{4}{5}\sin t, -\cos t, \frac{3}{5}\sin t\right)
$$

$$
\|\gamma'(t)\| = \sqrt{\left(-\frac{4}{5}\sin t\right)^2 + (-\cos t)^2 + \left(\frac{3}{5}\sin t\right)^2}
$$

$$
= \sqrt{\frac{16}{25}\sin^2 t + \cos^2 t + \frac{9}{25}\sin^2 t}
$$

$$
= \sqrt{\sin^2 t + \cos^2 t} = 1
$$

So $\|\gamma'(t)\| = 1$ and $\gamma(t)$ has unit speed. $L = \int_{t=2}^{t=5} ||\gamma'(t)||dt = \int_{t=2}^{t=5} dt = 5 - 2 = 3$ $_{t=2}^{t=5}$ || $\gamma'(t)$ || $dt = \int_{t=2}^{t=5} dt = 5 - 2 = 3$. $\int_{t=2}^{t=5}$ || $\gamma'(t)$ ||dt = $\int_{t=2}^{t=5} dt = 5 - 2 = 3$.

> The length of any unit speed curve, $\gamma(t)$, between $t = a$ and $t = b$, where $b \ge a$, will always be $b - a$.

Ex. Find the length of $\gamma(t) = (\sin 3t$, $\,cos 3t$, $\,2t$ 3 $\sqrt{2}$) between the points $(0, 1, 0)$ and $(0, -1, 2(\pi))$ 3 $\overline{2}$).

First let's determine which values of t correspond to $(0,1,0)$ and $(0,-1,2(\pi))$ 3 $\overline{2}$).

$$
(\sin 3t, \cos 3t, 2t^{\frac{3}{2}}) = (0, 1, 0)
$$

\n
$$
\Rightarrow t = 0.
$$

\n
$$
(\sin 3t, \cos 3t, 2t^{\frac{3}{2}}) = (0, -1, 2(\pi)^{\frac{3}{2}})
$$

\n
$$
\Rightarrow t = \pi.
$$

$$
\gamma'(t) = (3\cos t, -3\sin t, 3t^{\frac{1}{2}})
$$

$$
\|\gamma'(t)\| = \sqrt{9\cos^2 t + 9\sin^2 t + 9t} = 3(1+t)^{\frac{1}{2}}.
$$

$$
L = \int_{t=0}^{t=\pi} ||\gamma'(t)||dt = \int_{t=0}^{t=\pi} 3(1+t)^{\frac{1}{2}}dt
$$

= $3\left(\frac{2}{3}\right)(1+t)^{\frac{3}{2}}\Big|_{t=0}^{t=\pi} = 2\left[(1+\pi)^{\frac{3}{2}}-1\right].$

As we have seen, there are many ways to parametrize a curve. However, when we parametrize a curve using arc length as the parameter we will find that this simplifies many of our calculations. This is because if $s =$ arc length is the parameter for a curve then the curve is unit speed, i.e., $\|\gamma'(s)\|=1$.

Let's see why this is true. Notice that by the chain rule we have:

$$
\gamma(s) = (x(s), y(s), z(s)) \text{ and}
$$
\n
$$
\frac{dy}{dt} = \left(\frac{dx}{ds}\frac{ds}{dt}, \frac{dy}{ds}\frac{ds}{dt}, \frac{dz}{ds}\frac{ds}{dt}\right) = \frac{dy}{ds}\frac{ds}{dt}.
$$
\nRemember that $\frac{ds}{dt}$ is a scalar, so if it's not 0 we can say:\n
$$
\frac{dy}{ds} = \frac{\frac{dy}{dt}}{\frac{ds}{dt}}.
$$
\nTaking the length of both sides we get:\n
$$
\left\|\frac{dy}{ds}\right\| = \left\|\frac{\frac{dy}{dt}}{\frac{ds}{dt}}\right\| = \frac{\left\|\frac{dy}{dt}\right\|}{\left\|\frac{ds}{dt}\right\|}.
$$
\nbut we saw earlier that $\frac{ds}{dt} = \left\| \gamma'(t) \right\| = \left\| \frac{dy}{dt} \right\|$ \nThus $\left\|\frac{dy}{ds}\right\| = \left\| \gamma'(s) \right\| = 1.$

Recall that the dot product of two vectors in \mathbb{R}^n :

$$
\vec{a} = (a_1, a_2, ..., a_n) \text{ and } \vec{b} = (b_1, b_2, ..., b_n) \text{ is}
$$

$$
\vec{a} \cdot \vec{b} = \sum_{i=1}^n a_i b_i.
$$

If $\vec{a}(t)$, $\vec{b}(t)$ are vector functions of t then:

$$
\vec{a}(t) \cdot \vec{b}(t) = \sum_{i=1}^{n} a_i(t) b_i(t)
$$

and

$$
\frac{d}{dt}(\vec{a}(t)\cdot\vec{b}(t)) = \frac{d\vec{a}(t)}{dt}\cdot\vec{b}(t) + \vec{a}(t)\cdot\frac{d\vec{b}(t)}{dt}
$$

Since:
$$
\frac{d}{dt}(a_i(t)b_i(t)) = \frac{da_i(t)}{dt} \cdot b_i(t) + a_i(t) \cdot \frac{db_i(t)}{dt}.
$$

Proposition: Suppose $\vec{n}(t)$ is a smooth vector function of t and $\|\vec{n}(t)\| = 1$ for

all t, then $\vec{n}'(t)$ and $\vec{n}(t)$ are perpendicular to each other, thus $\vec{n}'(t) \cdot \vec{n}(t) = 0$ for all t.

Proof:

$$
\vec{n}(t) \cdot \vec{n}(t) = ||\vec{n}||^2 = 1
$$

$$
\frac{d\vec{n}}{dt} \cdot \vec{n} + \vec{n} \cdot \frac{d\vec{n}}{dt} = 0 \text{ for all } t
$$

or

$$
\vec{n}'(t) \cdot \vec{n}(t) = 0 \text{ for all } t.
$$