To solve an n^{th} order homogeneous linear differential equation with constant coefficients:

$$
a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0
$$

$$
a_0, a_1, \dots, a_n \in \mathbb{R}
$$

We guess at a solution: $y = e^{rx}$.

Given that the derivatives of y as

$$
y' = re^{rx}
$$

$$
y'' = r^2 e^{rx}
$$

$$
\vdots
$$

$$
y^{(n)} = r^n e^{rx}
$$

we get:

$$
a_n r^n e^{rx} + \dots + a_1 r e^{rx} + a_0 e^{rx} = 0
$$

$$
(a_n r^n + \dots + a_1 r + a_0) e^{rx} = 0.
$$

So we must solve the characteristic equation:

$$
a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0.
$$

Theorem: If the roots of the characteristic equation are distinct real numbers, $r_1, ..., r_n$, then we can say:

$$
y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \dots + c_n e^{r_n x}
$$

is a general solution to:

$$
a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0.
$$

Ex. Solve the initial value problem $y''' + 2y'' - 3y' = 0$ where $y(0) = 2$, $y'(0) = -7$, $y''(0) = 5$.

The characteristic equation is:

$$
r3 + 2r2 - 3r = 0
$$

$$
r(r2 + 2r - 3) = 0
$$

$$
r(r + 3)(r - 1) = 0
$$

$$
r = 0, -3, 1.
$$

So the general solution is:

$$
y = c_1 e^0 + c_2 e^{(-3x)} + c_3 e^x = c_1 + c_2 e^{(-3x)} + c_3 e^x
$$

\n
$$
y' = -3c_2 e^{(-3x)} + c_3 e^x
$$

\n
$$
y'' = 9c_2 e^{(-3x)} + c_3 e^x
$$

\n
$$
2 = y(0) = c_1 + c_2 e^0 + c_3 e^0 = c_1 + c_2 + c_3
$$

\n
$$
-7 = y'(0) = -3c_2 + c_3
$$

\n
$$
5 = y''(0) = 9c_2 + c_3
$$

$$
-7 = -3c_2 + c_3
$$

$$
\underline{5 = 9c_2 + c_3}
$$

$$
-12 = -12c_2
$$

$$
\implies c_2 = 1, c_3 = -4, c_1 = 5.
$$

So the solution to the initial value problem is:

$$
y = 5 + e^{(-3x)} - 4e^x.
$$

Theorem: If the characteristic equation has a repeated root, r , of multiplicity k , then part of the general solution of the homogeneous differential equation with constant coefficients is of the form:

$$
(c_1 + c_2 x + c_3 x^2 + \dots + c_k x^{k-1})e^{rx}.
$$

Ex. Find the general solution to $4y^{(6)} - 4y^{(5)} + y^{(4)} = 0.$

The characteristic equation is:

$$
4r6 - 4r5 + r4 = 0
$$

$$
r4(4r2 - 4r + 1) = 0
$$

$$
r4(2r - 1)2 = 0.
$$

So $r = 0$ is a root of order 4 and $r = \frac{1}{2}$ $\frac{1}{2}$ is a double root.

General solution:

$$
y = (c_1 + c_2x + c_3x^2 + c_4x^3)e^{(0)x} + (c_5 + c_6x)e^{(\frac{1}{2}x)}
$$

$$
y = c_1 + c_2x + c_3x^2 + c_4x^3 + (c_5 + c_6x)e^{(\frac{1}{2}x)}.
$$

What happens when the roots of the characteristic equation are complex (not real) numbers? For example:

$$
y''-2y'+5y=0
$$

Characteristic equation: $r^2 - 2r + 5 = 0$

$$
r = \frac{2 \pm \sqrt{(-2)^2 - 4(5)}}{2} = \frac{2 \pm \sqrt{-16}}{2} = 1 \pm 2i.
$$

First, when a polynomial with real coefficients has non-real roots they always come in conjugate pairs. In this case:

$$
r_1 = 1 + 2i, \qquad r_2 = 1 - 2i.
$$

We start with Euler's Formula: $e^{ix} = \cos x + i \sin x.$ So we have, $(a+bi)x = e^{ax+ibx} = e^{ax}e^{ibx}$ $= e^{ax}(\cos bx + i \sin bx)$ \overline{e} $(a-bi)x = e^{ax}(\cos bx - i \sin bx).$

If $f(x)$ and $g(x)$ are real valued functions given $F(x) = f(x) + ig(x)$, then we can define $F'(x)$ as: $F'(x) = f'(x) + ig'(x)$

Using this formula one can show that:

$$
\frac{d}{dx}(e^{rx}) = re^{rx}
$$
, when *r* is a complex constant.

So suppose that a characteristic equation has complex roots,

$$
r_1 = a + bi, \quad r_2 = a - bi.
$$

Then $c_1e^{(a+ib)x}+c_2e^{(a-ib)x}$ will be part of the general solution to the homogeneous equation. But we can also write:

$$
c_1 e^{(a+ib)x} + c_2 e^{(a-ib)x}
$$

= $c_1 (e^{ax} (\cos bx + i \sin bx)) + c_2 (e^{ax} (\cos bx - i \sin bx))$
= $(c_1 + c_2) e^{ax} (\cos bx) + i(c_1 - c_2) e^{ax} (\sin bx).$

In general, c_1 and c_2 could be complex constants. However, we are interested in real solutions to the differential equation.

If we choose
$$
c_1 = c_2 = \frac{1}{2}
$$
 we get $e^{ax}(\cos bx)$ as a solution.

If we choose $c_1 = -\frac{1}{2}$ $rac{1}{2}i$, $c_2 = \frac{1}{2}$ $\frac{1}{2}i$ we get $e^{ax}(\sin bx)$ as a solution.

These are linearly independent so,

Theorem: If the characteristic equation has a pair of complex conjugate roots $a \pm bi$, then the corresponding part of the general solution of the homogeneous equation is:

$$
e^{ax}(c_1\cos bx + c_2\sin bx).
$$

Ex. Solve $y'' - 2y' + 5y = 0$ for which $y(0) = 3$ and $y'(0) = -5$.

Characteristic equation: $r^2 - 2r + 5 = 0$ $r = 1 + 2i$ $a = 1,$ $b = 2.$

General solution:

 $y = e^x (c_1 \cos 2x + c_2 \sin 2x).$

Particular solution:

$$
y' = e^x(-2c_1 \sin 2x + 2c_2 \cos 2x) + e^x(c_1 \cos 2x + c_2 \sin 2x)
$$

\n
$$
3 = y(0) = e^0(c_1 \cos 0 + c_2 \sin 0) = c_1
$$

\n
$$
-5 = y'(0) = e^0(-2c_1 \sin 0 + 2c_2 \cos 0) + e^0(c_1 \cos 0 + c_2 \sin 0)
$$

\n
$$
= 2c_2 + c_1
$$

\n
$$
\implies c_1 = 3, \quad c_2 = -4.
$$

Particular Solution: $y = e^x(3\cos 2x - 4\sin 2x)$.

Ex. $3y^{(3)} - 2y'' + 12y' - 8y = 0$ has $y = e^{\left(\frac{2x}{3}\right)}$ $\frac{d^{2}}{3}$ as a solution. Find the general solution.

Since
$$
y = e^{(\frac{2x}{3})}
$$
 is a solution, $r = \frac{2}{3}$ is a solution of the characteristic eq.:
\n $3r^3 - 2r^2 + 12r - 8 = 0$.
\nSo $r - \frac{2}{3} = 0$ or $3r - 2 = 0$ and $3r - 2$ divides $3r^3 - 2r^2 + 12r - 8$.
\n $r^2 + 4$
\n $3r - 2 \overline{\smash{\big)}\ 3r^3 - 2r^2 + 12r - 8}$
\n $\underline{3r^3 - 2r^2}$
\n $12r - 8$
\n $\underline{12r - 8}$
\n0.

So $3r^3 - 2r^2 + 12r - 8 = (3r - 2)(r^2 + 4) = 0$, $r = \frac{2}{3}$ $\frac{2}{3}$, $r = \pm 2i$.

General solution:

$$
y = c_1 e^{(\frac{2x}{3})} + e^{(0)x} (c_2 \cos 2x + c_3 \sin 2x)
$$

$$
y = c_1 e^{(\frac{2x}{3})} + c_2 \cos 2x + c_3 \sin 2x.
$$

Repeated Complex Roots

If $a + bi$ and $a - bi$ are roots with multiplicity k then the part of the general solution corresponding to these roots are of the form:

$$
\sum_{i=0}^{k-1} x^i e^{ax} (c_i \cos bx + d_i \sin bx).
$$

Ex. The differential equation $y^{(4)} - 4y^{(3)} + 14y^{\prime\prime} - 20y^{\prime} + 25y = 0$ has a characteristic equation of:

$$
r^4 - 4r^3 + 14r^2 - 20r + 25 = (r^2 - 2r + 5)^2 = 0.
$$

Find the general solution to the differential equation.

 $r^2 - 2r + 5$ has roots $r = 1 \pm 2i$, which are double roots of:

$$
(r^2 - 2r + 5)^2 = 0
$$

General solution:

$$
y = e^x (c_1 \cos 2x + c_2 \sin 2x) + x e^x (c_3 \cos 2x + c_4 \sin 2x).
$$