Higher Order Linear Differential Equations

An **th Order Linear Differential Equation** is of the form:

$$
P_0(x)y^{(n)} + P_1(x)y^{(n-1)} + \dots + P_{n-1}(x)y' + P_n(x)y = F(x).
$$

If $P_0(x) \neq 0$, then we can divide the above equation by $P_0(x)$:

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x).
$$

The associated homogeneous equation is:

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.
$$

Theorem: Let $y_1, ..., y_n$ be n solutions of the homogeneous linear equation on the interval *I*. If $c_1, ..., c_n \in \mathbb{R}$, then the linear combination $y = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$ is also a solution to the homogeneous linear equation on the interval, I .

The proof is essentially the same as the case where $n = 2$.

Ex. $y_1(x) = e^{(-3x)}$, $y_2(x) = \cos 2x$, and $y_3(x) = \sin 2x$ are all solutions to the $3rd$ order homogeneous equation:

$$
y^{(3)} + 3y'' + 4y' + 12y = 0.
$$

Show that $y = 2e^{(-3x)} - 3\cos 2x + 2\sin 2x$ is a solution as well.

$$
y = 2e^{(-3x)} - 3\cos 2x + 2\sin 2x
$$

\n
$$
y' = -6e^{(-3x)} + 6\sin 2x + 4\cos 2x
$$

\n
$$
y'' = +18e^{(-3x)} + 12\cos 2x - 8\sin 2x
$$

\n
$$
y''' = -54e^{(-3x)} - 24\sin 2x - 16\cos 2x
$$

\n
$$
\Rightarrow y''' + 3y'' + 4y' + 12y = 0.
$$

We will see later that since y_1, y_2 , and y_3 are linearly independent the general solution is: $y = c_1 e^{(-3x)} + c_2 \cos 2x + c_3 \sin 2x$.

Theorem: Suppose $p_1, ..., p_n$ and f are continuous on the open interval, I , containing the point $a.$ Then given n numbers, $b_0, b_1, ..., b_{n-1}$, the $n^{\sf th}$ order linear differential equation

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)
$$

has a unique solution on I with:

$$
y(a) = b_0
$$
, $y'(a) = b_1$, ..., $y^{(n-1)}(a) = b_{n-1}$.

Ex. $y = c_1 e^{(-3x)} + c_2 \cos 2x + c_3 \sin 2x$ is the general solution to the equation $y''' + 3y'' + 4y' + 12y = 0$. Find the unique solution where $y(0) = 4$, $y'(0) = -7$, $y''(0) = -3$.

$$
y = c_1 e^{(-3x)} + c_2 \cos 2x + c_3 \sin 2x; \qquad y(0) = c_1 + c_2 = 4
$$

\n
$$
y' = -3c_1 e^{-3x} - 2c_2 \sin 2x + 2c_3 \cos 2x; \ y'(0) = -3c_1 + 2c_3 = -7
$$

\n
$$
y'' = 9c_1 e^{(-3x)} - 4c_2 \cos 2x - 4c_3 \sin 2x; \ y''(0) = 9c_1 - 4c_2 = -3
$$

Multiply the first equation on the right by 4 and add it to the third equation:

$$
4c_1 + 4c_2 = 16
$$

$$
9c_1 - 4c_2 = -3
$$

$$
13c_1 = 13
$$

$$
c_1 = 1
$$

$$
c_1 + c_2 = 4 \implies c_2 = 3
$$

$$
-3c_1 + 2c_3 = -7 \implies c_3 = -2.
$$

So the unique solution with $y(0) = 4$, $y'(0) = -7$, $y''(0) = -3$: $y = e^{(-3x)} + 3 \cos 2x - 2 \sin 2x$

Def. The *n* functions, $f_1, f_2, ..., f_n$, are said to be **linearly dependent** on the interval, I, provided there are constants $c_1, ..., c_n$, not all 0, such that $c_1 f_1(x) + c_2 f_2(x) + \cdots + c_n f_n(x) = 0$ on I.

Ex. Show that the functions $f(x) = 3$, $g(x) = 2 - 4x^3$, and $h(x) = x^3 - 1$ are linearly dependent on \mathbb{R} .

We need to show we can find c_1 , c_2 , c_3 , not all 0, such that:

$$
c_1(3) + c_2(2 - 4x^3) + c_3(x^3 - 1) = 0
$$

\n
$$
3c_1 + 2c_2 - 4c_2x^3 + c_3x^3 - c_3 = 0
$$

\n
$$
3c_1 - c_3 + 2c_2 + (c_3 - 4c_2)x^3 = 0
$$

\nso $c_3 - 4c_2 = 0$ and $3c_1 - c_3 + 2c_2 = 0$.

Let $c_2 = 1$ so $c_3 = 4$

$$
3c_1 - 4 + 2(1) = 0
$$

$$
c_1 = \frac{2}{3}
$$

So:
$$
\frac{2}{3}(3) + 1(2 - 4x^3) + 4(x^3 - 1) = 0.
$$

Thus $f(x)$, $g(x)$, and $h(x)$ are linearly dependent on \mathbb{R} .

- Def. *n* functions, $f_1, f_2, ..., f_n$, are called **linearly independent** on an interval, I, if $c_1 f_1 + c_2 f_2 + \cdots + c_n f_n = 0$ only when $c_1 = c_2 = \cdots = c_n = 0$ for every point in I.
- Ex. Show that $f(x) = x$, $g(x) = x^2$, and $h(x) = x + x^3$ are linearly independent on ℝ.

We need to show given any c_1 , c_2 , and c_3 with $c_1 f + c_2 g + c_3 h = 0$ then $c_1 = c_2 = c_3 = 0$.

$$
c_1(x) + c_2(x^2) + c_3(x + x^3) = 0
$$

$$
(c_1 + c_3)x + c_2(x^2) + c_3(x^3) = 0
$$

 \Rightarrow $c_2 = 0$, $c_3 = 0$ and thus $c_1 = 0$.

Suppose $f_1, ..., f_n$ are $(n - 1)$ times differentiable on an open interval, I , then **the Wronskian** of these functions is:

$$
W(f_1, ..., f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f_1' & f_2' & \dots & f_n' \\ \vdots & \vdots & \dots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}
$$

The Wronskian of n linearly dependent functions is 0. So to prove a set of n functions is linearly independent we just need to show that the Wronskian is nonzero (at any point in I).

Ex. Show the functions $f(x) = x$, $g(x) = x^2$, $h(x) = x + x^3$ are linearly independent on ℝ by showing $W(f, g, h) \neq 0$ for some $x \in \mathbb{R}$.

$$
W(f, g, h) = \begin{vmatrix} x & x^2 & x + x^3 \\ 1 & 2x & 1 + 3x^2 \\ 0 & 2 & 6x \end{vmatrix}
$$

= $x \begin{vmatrix} 2x & 1 + 3x^2 \\ 2 & 6x \end{vmatrix} - x^2 \begin{vmatrix} 1 & 1 + 3x^2 \\ 0 & 6x \end{vmatrix} + (x + x^3) \begin{vmatrix} 1 & 2x \\ 0 & 2 \end{vmatrix}$
= $x(12x^2 - 2(1 + 3x^2)) - x^2(6x) + (x + x^3)(2)$
= $x(6x^2 - 2) - 6x^3 + 2x + 2x^3 = 2x^3 \neq 0$ for $x \neq 0$.

Since the Wronskian is not equal to 0 everywhere, f , g , h are linearly independent.

|

Ex. Show that $y_1(x) = x$, $y_2(x) = x^2$, $y_3(x) = x^3$, which are solutions to $x^3y''' - x^2y'' + 2xy' - 2y = 0$, are linearly independent for $x > 0$. Find the particular solution with $y(1) = 2$, $y'(1) = 3$, and $y''(1) = 4$.

$$
W(y_1, y_2, y_3) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{vmatrix} = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix}
$$

= $x \begin{vmatrix} 2x & 3x^2 \\ 2 & 6x \end{vmatrix} - x^2 \begin{vmatrix} 1 & 3x^2 \\ 0 & 6x \end{vmatrix} + x^3 \begin{vmatrix} 1 & 1+2x \\ 0 & 2 \end{vmatrix}$
= $x(12x^2 - 6x^2) - x^2(6x) + x^3(2) = 2x^3 \neq 0$ for $x > 0$.

 \Rightarrow y_1 , y_2 , y_3 are linearly independent solutions to this differential equation.

Find the unique solution with
$$
y(1) = 2
$$
, $y'(1) = 3$, and $y''(1) = 4$.
\n $y(x) = c_1 x + c_2 x^2 + c_3 x^3$
\n $y'(1) = c_1 + c_2 + c_3 = 2$
\n $y' = c_1 + 2c_2 x + 3c_3 x^2$
\n $y''(1) = c_1 + 2c_2 + 3c_3 = 3$
\n $y'' = 2c_2 + 6c_3 x$
\n $y''(1) = 2c_2 + 6c_3 = 4$

$$
c_1 + 2c_2 + 3c_3 = 3
$$

\n
$$
c_1 + c_2 + c_3 = 2
$$

\n
$$
c_2 + 2c_3 = 1
$$

\n
$$
c_3 = 1
$$

\n
$$
c_4 = 2
$$

\n
$$
c_2 + 2c_3 = 1
$$

\n
$$
c_3 = 1
$$

\n
$$
c_4 = 2
$$

\n
$$
c_2 + 2c_3 = 1
$$

$$
\Rightarrow c_2 = -1, c_1 = 2.
$$

So the unique solution is with $y(1) = 2$, $y'(1) = 3$, and $y''(1) = 4$ is: $y = 2x - x^2 + x^3$.

Theorem: Suppose $y_1, ..., y_n$ are n solutions of the homogeneous n^{th} order linear equation:

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0
$$

on an open interval, I , where each $p_{\widetilde t}(x)$ is continuous.

Let
$$
W = W(y_1, y_2, ..., y_n)
$$
.

- a) If $y_1, y_2, ..., y_n$ are linearly dependent, then $W = 0$ on I
- b) If $y_1, y_2, ..., y_n$ are linearly independent, then $W \neq 0$ at each point of I_{\cdot}

Theorem: Let $y_1, y_2, ..., y_n$ be n linearly independent solutions of the homogeneous equation

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0
$$

on an open interval, I, where $p_i(x)$ are continuous. If Y is any solution then there exist numbers $c_1, ..., c_n$ such that

$$
Y(x) = c_1 y_1(x) + \dots + c_n y_n(x)
$$

for all x in $I. Y(x)$ is called the general solution.

Ex. We noted earlier that $y_1(x) = x$, $y_2(x) = x^2$, and $y_3(x) = x^3$ were linearly independent solutions to $x^3y''' - 3x^2y'' + 6xy' - 6y = 0$ thus, the general solution to this equation is:

$$
y(x) = c_1 x + c_2 x^2 + c_3 x^3.
$$

Now let's consider the non-homogeneous n^{th} order differential equation:

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)
$$

with the associated homogeneous equation,

$$
y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.
$$

Suppose we know a single particular solution, y_p , to the non-homogeneous equation. Let Y be any solution to the non-homogeneous equation.

Let
$$
y_c = Y - y_p
$$
 (we call y_c a complementary function).

Notice that y_c is a solution of the homogeneous equation since:

$$
y_c^{(n)} + p_1 y_c^{(n-1)} + \dots + p_{n-1} y_c' + p_n y_c
$$

=
$$
[Y^{(n)} + p_1 Y^{(n-1)} + \dots + p_{n-1} Y' + p_n Y]
$$

$$
- [y_p^{(n)} + p_1 y_p^{(n-1)} + \dots + p_{n-1} (x) y_p' + p_n y_p]
$$

=
$$
f(x) - f(x) = 0.
$$

So any solution of the non-homogeneous equation looks like: $Y = y_c + y_p$, where $y_c = c_1 y_1 + c_2 y_2 + \cdots + c_n y_n$ $y_1, ..., y_n$ are linearly independent homogenous solutions.

Ex. Given that $y_p = x^2 + 1$ is a particular solution to the equation $y'' + y' - 2y = 2x - 2x^2$, find the solution to $y'' + y' - 2y = 2x - 2x^2$ with $y(0) = 5$ and $y'(0) = 1$.

First solve the homogeneous equation to find y_c :

$$
y'' + y' - 2y = 0
$$

The characteristic equation is $r^2 + r - 2 = 0$

$$
(r + 2)(r - 1) = 0
$$

$$
r = 1, -2 \implies y_c = c_1 e^x + c_2 e^{-2x}.
$$

So the general solution to $y''+y'-2y=2x-2x^2$ is

$$
y = y_c + y_p = c_1 e^x + c_2 e^{-2x} + x^2 + 1.
$$

$$
y' = c_1 e^x - 2c_2 e^{-2x} + 2x
$$

\n
$$
5 = y(0) = c_1 e^0 + c_2 e^0 + 0^2 + 1 = c_1 + c_2 + 1
$$

\n
$$
1 = y'(0) = c_1(e^0) - 2c_2(e^0) + 2(0) = c_1 - 2c_2
$$

\n
$$
4 = c_1 + c_2
$$

\n
$$
\frac{1 = c_1 - 2c_2}{3} = \frac{3c_2}{3c_2}
$$

\n
$$
\Rightarrow c_2 = 1, \quad c_1 = 3.
$$

So the solution to $y^{\prime\prime}+y^\prime-2y=2x-2x^2$ with $y(0)=5$ and $y'(0) = 1$ is:

$$
y = 3e^x + e^{-2x} + x^2 + 1.
$$