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                     Higher Order Linear Differential Equations 

 

An 𝒏th Order Linear Differential Equation is of the form: 

𝑃0(𝑥)𝑦(𝑛) + 𝑃1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑃𝑛−1(𝑥)𝑦′ + 𝑃𝑛(𝑥)𝑦 = 𝐹(𝑥). 

 

If 𝑃0(𝑥) ≠ 0, then we can divide the above equation by 𝑃0(𝑥): 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 𝑓(𝑥). 

The associated homogeneous equation is: 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 0. 

 

Theorem: Let 𝑦1, … , 𝑦𝑛 be 𝑛 solutions of the homogeneous linear equation on 

the interval 𝐼. If 𝑐1, … , 𝑐𝑛 ∈ ℝ, then the linear combination                               

𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ + 𝑐𝑛𝑦𝑛 is also a solution to the homogeneous linear 

equation on the interval, 𝐼. 

 

The proof is essentially the same as the case where 𝑛 = 2. 

 

Ex.     𝑦1(𝑥) = 𝑒(−3𝑥),    𝑦2(𝑥) = cos 2𝑥,  and  𝑦3(𝑥) = sin 2𝑥  are 

 all solutions to the 3rd order homogeneous equation: 

𝑦(3) + 3𝑦" + 4𝑦′ + 12𝑦 = 0. 

 Show that  𝑦 = 2𝑒(−3𝑥) − 3 cos 2𝑥 + 2 sin 2𝑥 is a solution as well. 
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                               𝑦 = 2𝑒(−3𝑥) − 3 cos 2𝑥 + 2 sin 2𝑥 

                             𝑦′ = −6𝑒(−3𝑥) + 6 sin 2𝑥 + 4 cos 2𝑥 

                            𝑦′′ = +18𝑒(−3𝑥) + 12 cos 2𝑥 − 8 sin 2𝑥 

𝑦′′′ = −54𝑒(−3𝑥) − 24 sin 2𝑥 − 16 cos 2𝑥 

               ⟹        𝑦′′′ + 3𝑦′′ + 4𝑦′ + 12𝑦 = 0. 

We will see later that since 𝑦1, 𝑦2, and 𝑦3 are linearly independent the  

general solution is:    𝑦 = 𝑐1𝑒(−3𝑥) + 𝑐2 cos 2𝑥 + 𝑐3 sin 2𝑥. 

 

Theorem:  Suppose 𝑝1, … , 𝑝𝑛 and 𝑓 are continuous on the open interval, 𝐼, 

containing the point 𝑎. Then given 𝑛 numbers, 𝑏0, 𝑏1, … , 𝑏𝑛−1, the 𝑛th order 

linear differential equation 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 𝑓(𝑥)  

has a unique solution on 𝐼 with: 

𝑦(𝑎) = 𝑏0,    𝑦′(𝑎) = 𝑏1 ,   … ,   𝑦(𝑛−1)(𝑎) = 𝑏𝑛−1. 

 

Ex.   𝑦 = 𝑐1𝑒(−3𝑥) + 𝑐2 cos 2𝑥 + 𝑐3 sin 2𝑥 is the general solution to the 

 equation  𝑦′′′ + 3𝑦′′ + 4𝑦′ + 12𝑦 = 0. Find the unique solution 

 where 𝑦(0) = 4, 𝑦′(0) = −7, 𝑦′′(0) = −3. 

 

  𝑦 = 𝑐1𝑒(−3𝑥) + 𝑐2 cos 2𝑥 + 𝑐3 sin 2𝑥 ;              𝑦(0) = 𝑐1 + 𝑐2 = 4 

𝑦′ = −3𝑐1𝑒−3𝑥 − 2𝑐2 sin 2𝑥 + 2𝑐3 cos 2𝑥 ;  𝑦′(0) = −3𝑐1 + 2𝑐3 = −7 

𝑦′′ = 9𝑐1𝑒(−3𝑥) − 4𝑐2 cos 2𝑥 − 4𝑐3 sin 2𝑥 ;   𝑦′′(0) = 9𝑐1 − 4𝑐2 = −3 
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Multiply the first equation on the right by 4 and add it to the third equation: 

4𝑐1 + 4𝑐2 = 16 

9𝑐1 − 4𝑐2  = −3 

                                                13𝑐1             = 13 

𝑐1 = 1 

𝑐1 + 𝑐2 = 4  ⇒   𝑐2 = 3 

−3𝑐1 + 2𝑐3 = −7  ⇒   𝑐3 = −2. 

 

 So the unique solution with 𝑦(0) = 4, 𝑦′(0) = −7, 𝑦′′(0) = −3: 

𝑦 = 𝑒(−3𝑥) + 3 cos 2𝑥 − 2 sin 2𝑥 

 

Def.  The 𝑛 functions, 𝑓1, 𝑓2, … , 𝑓𝑛, are said to be linearly dependent on the 

interval, 𝐼, provided there are constants 𝑐1, … , 𝑐𝑛, not all 0, such that 

𝑐1𝑓1(𝑥) + 𝑐2𝑓2(𝑥) + ⋯ + 𝑐𝑛𝑓𝑛(𝑥) = 0 on 𝐼. 

 

Ex.  Show that the functions 𝑓(𝑥) = 3,   𝑔(𝑥) = 2 − 4𝑥3, and  

      ℎ(𝑥) = 𝑥3 − 1 are linearly dependent on ℝ. 

 

           We need to show we can find 𝑐1, 𝑐2, 𝑐3, not all 0, such that: 

𝑐1(3) + 𝑐2(2 − 4𝑥3) + 𝑐3(𝑥3 − 1) = 0 

                                   3𝑐1 + 2𝑐2 − 4𝑐2𝑥3 + 𝑐3𝑥3 − 𝑐3 = 0 

                                    3𝑐1 − 𝑐3 + 2𝑐2 + (𝑐3 − 4𝑐2)𝑥3 = 0 

 so 𝑐3 − 4𝑐2 = 0 and 3𝑐1 − 𝑐3 + 2𝑐2 = 0. 
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 Let 𝑐2 = 1 so 𝑐3 = 4   

3𝑐1 − 4 + 2(1) = 0 

𝑐1 =
2

3
  

 So:         
2

3
(3) + 1(2 − 4𝑥3) + 4(𝑥3 − 1) = 0. 

           Thus  𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) are linearly dependent on ℝ. 

 

Def. 𝑛 functions, 𝑓1, 𝑓2, … , 𝑓𝑛, are called linearly independent on an 

 interval, 𝐼, if 𝑐1𝑓1 + 𝑐2𝑓2 + ⋯ + 𝑐𝑛𝑓𝑛 = 0 only when            

 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑛 = 0 for every point in 𝐼. 

 

Ex.   Show that 𝑓(𝑥) = 𝑥, 𝑔(𝑥) = 𝑥2,  and ℎ(𝑥) = 𝑥 + 𝑥3 are linearly  

         independent on ℝ. 

 

        We need to show given any 𝑐1, 𝑐2, and 𝑐3 with 𝑐1𝑓 + 𝑐2𝑔 + 𝑐3ℎ = 0 

         then 𝑐1 = 𝑐2 = 𝑐3 = 0. 

𝑐1(𝑥) + 𝑐2(𝑥2) + 𝑐3(𝑥 + 𝑥3) = 0 

(𝑐1 + 𝑐3)𝑥 + 𝑐2(𝑥2) + 𝑐3(𝑥3) = 0 

    ⇒ 𝑐2 = 0 , 𝑐3 = 0 and thus 𝑐1 = 0. 
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Suppose 𝑓1, … , 𝑓𝑛 are (𝑛 − 1) times differentiable on an open interval, 𝐼, then 

the Wronskian of these functions is: 

 

𝑊(𝑓1, … , 𝑓𝑛) = ||

𝑓1 𝑓2 … 𝑓𝑛

𝑓1′ 𝑓2′ … 𝑓𝑛′
⋮ ⋮ … ⋮

𝑓1
(𝑛−1) 𝑓2

(𝑛−1) … 𝑓𝑛
(𝑛−1)

|| 

 

The Wronskian of 𝑛 linearly dependent functions is 0. So to prove a set of 𝑛 
functions is linearly independent we just need to show that the Wronskian is non-

zero (at any point in 𝐼). 

 

Ex.    Show the functions 𝑓(𝑥) = 𝑥,   𝑔(𝑥) = 𝑥2,   ℎ(𝑥) = 𝑥 + 𝑥3 are  

          linearly independent on ℝ by showing 𝑊(𝑓, 𝑔, ℎ) ≠ 0 for some 𝑥 ∈ ℝ. 

 

𝑊(𝑓, 𝑔, ℎ) = |
𝑥 𝑥2 𝑥 + 𝑥3

1 2𝑥 1 + 3𝑥2

0 2 6𝑥

| 

 

                    = 𝑥 |2𝑥 1 + 3𝑥2

2 6𝑥
| − 𝑥2 |1 1 + 3𝑥2

0 6𝑥
| + (𝑥 + 𝑥3) |

1 2𝑥
0 2

| 

                    = 𝑥(12𝑥2 − 2(1 + 3𝑥2)) − 𝑥2(6𝑥) + (𝑥 + 𝑥3)(2) 

                    = 𝑥(6𝑥2 − 2) − 6𝑥3 + 2𝑥 + 2𝑥3 = 2𝑥3 ≠ 0 for 𝑥 ≠ 0.  

 

 Since the Wronskian is not equal to 0 everywhere, 𝑓, 𝑔, ℎ are  linearly  

            independent. 
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Ex.      Show that 𝑦1(𝑥) = 𝑥, 𝑦2(𝑥) = 𝑥2,  𝑦3(𝑥) = 𝑥3, which are solutions

 to 𝑥3𝑦′′′ − 𝑥2𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0, are linearly independent for 𝑥 > 0.   

 Find the particular solution with 𝑦(1) = 2, 𝑦′(1) = 3, and 𝑦′′(1) = 4. 

 

  𝑊(𝑦1, 𝑦2, 𝑦3) = |

𝑦1 𝑦2 𝑦3

𝑦1′ 𝑦2′ 𝑦3′

𝑦1′′ 𝑦2′′ 𝑦3′′
|  = |

𝑥 𝑥2 𝑥3

1 2𝑥 3𝑥2

0 2 6𝑥

|  

        = 𝑥 |2𝑥 3𝑥2

2 6𝑥
| − 𝑥2 |1 3𝑥2

0 6𝑥
| + 𝑥3 |

1 1 + 2𝑥
0 2

|  

                     = 𝑥(12𝑥2 − 6𝑥2) − 𝑥2(6𝑥) + 𝑥3(2)  = 2𝑥3 ≠ 0  for 𝑥 > 0. 

         ⇒ 𝑦1, 𝑦2, 𝑦3 are linearly independent solutions to this differential equation. 

 

 Find the unique solution with 𝑦(1) = 2, 𝑦′(1) = 3, and 𝑦′′(1) = 4. 

𝑦(𝑥) = 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3                      𝑦(1) = 𝑐1 +  𝑐2 +    𝑐3 = 2 

     𝑦′ = 𝑐1 + 2𝑐2𝑥 + 3𝑐3𝑥2                    𝑦′(1) = 𝑐1 + 2𝑐2 + 3𝑐3 = 3 

    𝑦′′ = 2𝑐2 + 6𝑐3𝑥                                 𝑦′′(1) =          2𝑐2 + 6𝑐3 = 4 

 

          𝑐1 + 2𝑐2 + 3𝑐3 = 3                             2𝑐2 + 4𝑐3 = 2     

          c1 +    c2 +   c3 = 2           ⟹             2𝑐2 + 6𝑐3 = 4  

                       𝑐2 + 2𝑐3 = 1                                    −2𝑐3 = −2   ⟹   𝑐3 = 1  

 

                                         ⇒   𝑐2 = −1,   𝑐1 = 2. 

 

So the unique solution is with 𝑦(1) = 2, 𝑦′(1) = 3, and 𝑦′′(1) = 4 is:   

                             𝑦 = 2𝑥 − 𝑥2 + 𝑥3. 
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Theorem:  Suppose 𝑦1, … , 𝑦𝑛 are 𝑛 solutions of the homogeneous 𝑛th   

                 order linear equation:  

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 0 

 on an open interval, 𝐼, where each 𝑝𝑖(𝑥) is continuous. 

 Let 𝑊 = 𝑊(𝑦1, 𝑦2, … , 𝑦𝑛).  

a) If 𝑦1, 𝑦2, … , 𝑦𝑛 are linearly dependent, then 𝑊 = 0 on 𝐼 

b) If 𝑦1, 𝑦2, … , 𝑦𝑛 are linearly independent, then 𝑊 ≠ 0 at each point of  

𝐼. 

 

Theorem:  Let 𝑦1, 𝑦2, … , 𝑦𝑛 be 𝑛 linearly independent solutions of the 

 homogeneous equation 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 0 

 on an open interval, 𝐼, where 𝑝𝑖(𝑥) are continuous. If 𝑌 is any 

 solution then there exist numbers 𝑐1, … , 𝑐𝑛 such that  

𝑌(𝑥) = 𝑐1𝑦1(𝑥) + ⋯ + 𝑐𝑛𝑦𝑛(𝑥) 

 for all 𝑥 in 𝐼. 𝑌(𝑥) is called the general solution. 

 

Ex.     We noted earlier that 𝑦1(𝑥) = 𝑥,  𝑦2(𝑥) = 𝑥2, and 𝑦3(𝑥) = 𝑥3 were 

 linearly independent solutions to 𝑥3𝑦′′′ − 3𝑥2𝑦′′ + 6𝑥𝑦′ − 6𝑦 = 0 
 thus, the general solution to this equation is: 

𝑦(𝑥) = 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3. 
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Now let’s consider the non-homogeneous 𝑛th order differential equation: 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 𝑓(𝑥) 

 with the associated homogeneous equation, 

𝑦(𝑛) + 𝑝1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦′ + 𝑝𝑛(𝑥)𝑦 = 0.  

 

Suppose we know a single particular solution, 𝑦𝑝, to the  non-homogeneous 

equation. Let 𝑌 be any solution to the non-homogeneous equation. 

 

 Let 𝑦𝑐 = 𝑌 − 𝑦𝑝         (we call 𝑦𝑐  a complementary function). 

 

 Notice that 𝑦𝑐  is a solution of the homogeneous equation since: 

 

          𝑦𝑐
(𝑛) + 𝑝1𝑦𝑐

(𝑛−1) + ⋯ + 𝑝𝑛−1𝑦𝑐
′ + 𝑝𝑛𝑦𝑐 

 

                 = [𝑌(𝑛) + 𝑝1𝑌(𝑛−1) + ⋯ + 𝑝𝑛−1𝑌′ + 𝑝𝑛𝑌] 

                                    

                                   −[𝑦𝑝
(𝑛) + 𝑝1𝑦𝑝

(𝑛−1) + ⋯ + 𝑝𝑛−1(𝑥)𝑦𝑝
′ + 𝑝𝑛𝑦𝑝] 

 

                  = 𝑓(𝑥) − 𝑓(𝑥) = 0. 

 

 So any solution of the non-homogeneous equation looks like: 

𝑌 = 𝑦𝑐 + 𝑦𝑝,       where   𝑦𝑐 = 𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ + 𝑐𝑛𝑦𝑛 

𝑦1, … , 𝑦𝑛 are linearly independent homogenous solutions. 
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Ex.      Given that 𝑦𝑝 = 𝑥2 + 1 is a particular solution to the equation  

 𝑦′′ + 𝑦′ − 2𝑦 = 2𝑥 − 2𝑥2,   find the solution to 

𝑦′′ + 𝑦′ − 2𝑦 = 2𝑥 − 2𝑥2 with 𝑦(0) = 5 and 𝑦′(0) = 1. 

 

First solve the homogeneous equation to find 𝑦𝑐:  

𝑦′′ + 𝑦′ − 2𝑦 = 0 

The characteristic equation is   𝑟2 + 𝑟 − 2 = 0 

(𝑟 + 2)(𝑟 − 1) = 0 

                                                  𝑟 = 1, −2    ⟹    𝑦𝑐 = 𝑐1𝑒𝑥 + 𝑐2𝑒−2𝑥 .  

 

So the general solution to 𝑦′′ + 𝑦′ − 2𝑦 = 2𝑥 − 2𝑥2 is 

              𝑦 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1𝑒𝑥 + 𝑐2𝑒−2𝑥 + 𝑥2 + 1.  

 

                                𝑦′ = 𝑐1𝑒𝑥 − 2𝑐2𝑒−2𝑥 + 2𝑥 

              5 = 𝑦(0) = 𝑐1𝑒0 + 𝑐2𝑒0 + 02 + 1 = 𝑐1 + 𝑐2 + 1 

1 = 𝑦′(0) = 𝑐1(𝑒0) − 2𝑐2(𝑒0) + 2(0) = 𝑐1 − 2𝑐2 

4 = 𝑐1 + 𝑐2 

  1 = 𝑐1 − 2𝑐2 

                                                            3 =         3𝑐2 

                                               ⇒       𝑐2 = 1 ,    𝑐1 = 3. 

 So the solution to 𝑦′′ + 𝑦′ − 2𝑦 = 2𝑥 − 2𝑥2 with 𝑦(0) = 5 and  

          𝑦′(0) = 1 is: 

𝑦 = 3𝑒𝑥 + 𝑒−2𝑥 + 𝑥2 + 1. 


