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                             Velocity and Acceleration Models 

 

 A mass near the Earth is under the influence of gravity, which accelerates 

the mass toward the Earth at 𝑔 ≈ 9.8𝑚/𝑠𝑒𝑐2 ≈ 32𝑓𝑡/𝑠𝑒𝑐2 (assuming we 

ignore effects of air resistance). The force on a mass, 𝑚, experiences a force of 

gravity given by: 

 

                                            𝐹𝐺 = −𝑚𝑔. 

 

Now let’s consider the impact of the force of air resistance given by: 

 

                                             𝐹𝑅 = −𝑘𝑣 ;    𝑘 > 0. 

 

Note: If an object is falling then 𝑣 is negative, 𝑘 is positive, and            

 𝐹𝑅 = −𝑘𝑣 is positive. 

 

Newton’s Second Law of Motion:  𝐹 = 𝑚
𝑑𝑣

𝑑𝑡
= −𝑘𝑣 − 𝑚𝑔  

 

𝑑𝑣

𝑑𝑡
= −

𝑘

𝑚
𝑣 − 𝑔     or      

𝑑𝑣

𝑑𝑡
= −𝜌𝑣 − 𝑔 

 

where 𝜌 =
𝑘

𝑚
> 0 is called the drag coefficient. 
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Ex.  Let’s solve the separable equation 
𝑑𝑣

𝑑𝑡
= −𝜌𝑣 − 𝑔. 

 

1

−𝜌𝑣−𝑔

𝑑𝑣

𝑑𝑡
= 1    ⟹    

𝑑𝑣

−𝜌𝑣−𝑔
= 𝑑𝑡  

 

                                            ∫
𝑑𝑣

−𝜌𝑣−𝑔
= ∫ 𝑑𝑡  

 

                    −
1

𝜌
ln | − 𝜌𝑣 − 𝑔| + 𝑐1 = 𝑡 + 𝑐2  

 

                               −
1

𝜌
ln | − 𝜌𝑣 − 𝑔| = 𝑡 + 𝑐3  

 

ln | − 𝜌𝑣 − 𝑔| = −𝜌𝑡 − 𝑐3𝜌  

 

                            −𝜌𝑣 − 𝑔 < 0  so |−𝜌𝑣 − 𝑔| = 𝜌𝑣 + 𝑔 and 

                                        

      ln( 𝜌𝑣 + 𝑔) = −𝜌𝑡 − 𝑐3𝜌 

 

                                      𝜌𝑣 + 𝑔 = 𝑒−𝜌𝑡−𝑐3𝜌 = 𝑒−𝑐3𝜌𝑒−𝜌𝑡 

 

                                   𝜌𝑣 = 𝑒−𝑐3𝜌𝑒−𝜌𝑡 − 𝑔  

 

                                                     𝑣(𝑡) =
1

𝜌
(𝑒−𝑐3𝜌𝑒−𝜌𝑡) −

𝑔

𝜌
 . 
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 If 𝑣(0) = 𝑣0, then we have: 

𝑣0 =
1

𝜌
𝑒−𝑐3𝜌 −

𝑔

𝜌
   or   (

𝑔

𝜌
+ 𝑣0) =

1

𝜌
𝑒−𝑐3𝜌 

 

            ⟹       𝑣(𝑡) = (𝑣0 +
𝑔

𝜌
) 𝑒−𝜌𝑡 −

𝑔

𝜌
.           particular solution. 

 

 Notice: 𝑣𝜏 = lim
𝑡→∞

𝑣(𝑡) = −
𝑔

𝜌
= terminal velocity. 

 

 Thus, a falling object has a terminal speed: 

|𝑣𝜏| =
𝑔

𝜌
=

𝑚𝑔

𝑘
 .  

 We can rewrite 𝑣(𝑡) as: 

                           𝑣(𝑡) = (𝑣0 − 𝑣𝜏)𝑒−𝜌𝑡 + 𝑣𝜏 . 

 

 If  𝑦(𝑡) is the distance of the falling object above the ground then: 

                                  
𝑑𝑦

𝑑𝑡
= 𝑣(𝑡) = (𝑣0 − 𝑣𝜏)𝑒−𝜌𝑡 + 𝑣𝜏 .  

 Integrating this equation we get: 

𝑦(𝑡) = −
1

𝜌
(𝑣0 − 𝑣𝜏)𝑒−𝜌𝑡 + 𝑣𝜏𝑡 + 𝑐  

 If 𝑦0 = 𝑦(0), then we get:   𝑦0 = −
1

𝜌
(𝑣0 − 𝑣𝜏) + 𝑐  

𝑦0 +
1

𝜌
(𝑣0 − 𝑣𝜏) = 𝑐  

           𝑦(𝑡) = 𝑦0 + 𝑣𝜏𝑡 +
1

𝜌
(𝑣0 − 𝑣𝜏)(1 − 𝑒−𝜌𝑡). 
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Ex.  A car is traveling at 88𝑓𝑡/𝑠𝑒𝑐 (60 𝑚𝑝ℎ) and the engine shuts off. After 20 

seconds the car is going 11𝑓𝑡/𝑠𝑒𝑐. Assume that resistance it encountered while 

coasting was proportional to the velocity. How far will the car coast before it 

stops?  

 

𝑑𝑣

𝑑𝑡
= −𝜌𝑣 ⟹   −

1

𝜌𝑣
𝑑𝑣 = 𝑑𝑡   

  

                         − ∫
1

𝜌𝑣
𝑑𝑣 = ∫ 𝑑𝑡 

                          −
1

𝜌
ln(𝑣) = 𝑡 + 𝑐1  ;    since 𝑣 > 0 

                                  ln(𝑣) = −𝜌𝑡 − 𝑐2 

                                          𝑣 = 𝑒−𝜌𝑡−𝑐2 

                                     𝑣(𝑡) = 𝑐3𝑒−𝜌𝑡. 

 

                                          88 = 𝑣(0) = 𝑐3𝑒0 = 𝑐3    

                           ⟹       𝑣(𝑡) = 88𝑒−𝜌𝑡 . 

 

  11 = 𝑣(20) = 88𝑒−𝜌(20) 

                                              
1

8
= 𝑒−20𝜌  

                                      ln (
1

8
) = −20𝜌  

                              −
1

20
ln (

1

8
) = 𝜌 ,       ⟹   𝜌 ≈ .104. 
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                       𝑣(𝑡) = 88𝑒−.104𝑡 =
𝑑𝑥

𝑑𝑡
           Now integrate. 

                       𝑥(𝑡) =
88

−.104
𝑒−.104𝑡 + 𝑐.  

 

𝑥(0) = 0   ⟹    0 = −
88

.104
𝑒0 + 𝑐 , so 𝑐 =

88

.104
 .  

                       𝑥(𝑡) = −
88

.104
𝑒−.104𝑡 +

88

.104
 .   

 

               lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

(−
88

.104
𝑒−.104𝑡 +

88

.104
  ) ≈ 846 feet. 

 

 

When Resistance is Proportional to the Square of the Velocity  

 Now assume that air (or any) resistance is proportional to the square of the 

           velocity,  

𝐹𝑅 = ±𝑘𝑣2 , 𝑘 > 0. 

 The choice of sign has to do with direction of motion. If we take the 

 upward direction as positive then 𝐹𝑅 < 0 for positive motion. 𝐹𝑅  is  

            always opposite of that of 𝑣, we can write: 

                                           𝐹𝑅 = −𝑘𝑣|𝑣|. 

 

 Newton’s Second Law of Motion gives us: 

𝐹 = 𝑚
𝑑𝑣

𝑑𝑡
= 𝐹𝐺 + 𝐹𝑅 = −𝑚𝑔 − 𝑘𝑣|𝑣|  or     

                                         
𝑑𝑣

𝑑𝑡
= −𝑔 − 𝜌𝑣|𝑣|. 
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 Upward Motion:  Suppose a projectile is launched upward from an initial  

            position 𝑦0 with an initial velocity 𝑣0 > 0. Then we know: 

 

              
𝑑𝑣

𝑑𝑡
= −𝑔 − 𝜌𝑣2 = −𝑔(1 +

𝜌

𝑔
𝑣2)  

                              
𝑑𝑣

(1+
𝜌

𝑔
𝑣2)

= −𝑔 𝑑𝑡  

                            ∫
𝑑𝑣

(1+
𝜌

𝑔
𝑣2)

= ∫ −𝑔 𝑑𝑡.   

 Substituting 𝑢 = (√
𝜌

𝑔
) 𝑣 and then resubstituting back we get:        

    √
𝑔

𝜌
tan−1 (𝑣√

𝜌

𝑔
) + 𝑐1 = −𝑔𝑡 + 𝑐2  

 

              √
𝑔

𝜌
tan−1 (𝑣√

𝜌

𝑔
) = −𝑔𝑡 + 𝑐3  

 

                     tan−1 (𝑣√
𝜌

𝑔
) = (√

𝜌

𝑔
)(−𝑔𝑡 + 𝑐3)  

 

                      tan−1 (𝑣√
𝜌

𝑔
) = −√𝜌𝑔 𝑡 + 𝑐4  

 

                                      𝑣√
𝜌

𝑔
= tan(− √𝜌𝑔 𝑡 + 𝑐4)  

 

                                           𝑣 = √
𝑔

𝜌
 tan(− √𝜌𝑔 𝑡 + 𝑐4).    general solution.  
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  We know 𝑣0 = 𝑣(0) = √
𝑔

𝜌
tan(𝑐4) so, 

tan−1 (𝑣0√
𝜌

𝑔
) =  𝑐4.  

 

 To find the position function 𝑦(𝑡) we integrate 𝑣(𝑡) =
𝑑𝑦

𝑑𝑡
   

𝑦(𝑡) = ∫ √
𝑔

𝜌
tan(−√𝜌𝑔 𝑡 + 𝑐4)𝑑𝑡  

 

 Recall: ∫ tan 𝑢 𝑑𝑢 = ∫
sin 𝑢

cos 𝑢
𝑑𝑢 = − ln|cos 𝑢| + 𝑐     

 

                      ⟹     𝑦(𝑡) = (
1

𝜌
) ln |

cos(−√𝜌𝑔 𝑡+𝑐4)

cos 𝑐4
| +𝑦0 

 

 

 Downward Motion: 𝑣0 ≤ 0 and 𝑣 < 0 

𝑑𝑣

𝑑𝑡
 = −𝑔 + 𝜌𝑣2                 (𝑣 < 0 so |𝑣| = −𝑣) 

𝑑𝑣

𝑑𝑡
= −𝑔(1 −

𝜌

𝑔
𝑣2)  

                               
1

1−
𝜌

𝑔
𝑣2

𝑑𝑣 = −𝑔 𝑑𝑡  

                            ∫
1

1−
𝜌

𝑔
𝑣2

𝑑𝑣 = ∫ −𝑔 𝑑𝑡  
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Recall ∫
1

1−𝑢2  𝑑𝑢 = tanh−1 𝑢 + 𝑐, where tanh 𝑢 =
sinh 𝑢

cosh 𝑢
=

1

2
(𝑒𝑢−𝑒−𝑢)

1

2
(𝑒𝑢+𝑒−𝑢)

 . 

              ⟹             𝑣(𝑡) = √
𝑔

𝜌
tanh(−√𝜌𝑔 𝑡 + 𝑐) ;   𝑐 = tanh−1(𝑣0√

𝜌

𝑔
).   

 

 By integrating 𝑣(𝑡) we get the position 𝑦(𝑡): 

                                𝑦(𝑡) = 𝑦0 −
1

𝜌
ln |

cosh(−√𝜌𝑔 𝑡+𝑐)

cosh 𝑐
|.   

 

 If 𝑣0 = 0, then 𝑐 = tanh−1(0) = 0 so we know, 

𝑣(𝑡) = −√
𝑔

𝜌
tanh( √𝜌𝑔 𝑡)    (since tanh(−𝑢) = − tanh(𝑢).)   

 

lim
𝑥→∞

tanh(𝑥) = lim
𝑥→∞

1

2
(𝑒𝑥−𝑒−𝑥)

1

2
(𝑒𝑥+𝑒−𝑥)

= 1 so 

𝑣𝜏 = lim
𝑡→∞

𝑣(𝑡) = lim
𝑡→∞

− √
𝑔

𝜌
tanh( √𝜌𝑔 𝑡) = −√

𝑔

𝜌
   

 

 Compare this 𝑣𝜏 with the 𝑣𝜏 = −
𝑔

𝜌
  for linear resistance. 
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Ex.  Assume resistance is proportional to the square of the velocity.  

       How far does the car from the earlier example go in the first minute? 

 

  
𝑑𝑣

𝑑𝑡
 = −𝜌𝑣2  

1

𝑣2 𝑑𝑣 = −𝜌 𝑑𝑡  

  ∫
1

𝑣2 𝑑𝑣 = ∫ −𝜌 𝑑𝑡  

    −
1

𝑣
+ 𝑐1 = −𝜌𝑡 + 𝑐2  

               −
1

𝑣
= −𝜌𝑡 + 𝑐3  

1

𝑣
= 𝜌𝑡 − 𝑐3, so we know  𝑣(𝑡) =

1

𝜌𝑡−𝑐3
 .   

  

88 = 𝑣(0) =
1

−𝑐3
 ,   so we can say  

1

88
= −𝑐3 .  

                                           𝑣(𝑡) =
1

𝜌𝑡+
1

88

 .   

 

    11 = 𝑣(20) =
1

20𝜌+
1

88

 , thus  𝜌 ≈ .00398.      

𝑣(𝑡) =
1

.00398𝑡+
1

88

=
𝑑𝑥

𝑑𝑡
     

 

 𝑥(𝑡) = ∫
1

.00398𝑡+
1

88

 𝑑𝑡  



10 
 

                                          𝑥(𝑡) =
ln(.00398𝑡+

1
88

)

.00398
+ 𝑐    

 

             0 = 𝑥(0) =
ln(

1
88

)

.00398
+ 𝑐,    thus 𝑐 ≈ 1,125   

                 𝑥(𝑡) =
ln(.00398𝑡+

1
88

)

.00398
+ 1,125.    

                                            𝑥(60) ≈ 777 feet.   

 

     Notice that unlike the situation where 
𝑑𝑣

𝑑𝑡
= −𝜌𝑣, when  

𝑑𝑣

𝑑𝑡
= −𝜌𝑣2,        

     lim
𝑡→∞

𝑥(𝑡) = ∞.  This is because  when 
𝑑𝑣

𝑑𝑡
= −𝜌𝑣, lim

𝑡→∞
𝑣(𝑡) = 0, and 

     𝑣(𝑡) goes to zero “fast enough” so that its integral from zero to ∞ is finite.  

      But when 
𝑑𝑣

𝑑𝑡
= −𝜌𝑣2, lim

𝑡→∞
𝑣(𝑡) = 0, but 𝑣(𝑡) doesn’t go to zero fast 

      enough, so that the integral from zero to infinity is infinite.    


