Velocity and Acceleration Models

A mass near the Earth is under the influence of gravity, which accelerates
the mass toward the Earth at g =~ 9.8m/sec? ~ 32ft/sec? (assuming we

ignore effects of air resistance). The force on a mass, m, experiences a force of
gravity given by:

F, = —mg.

Now let’s consider the impact of the force of air resistance given by:

FR=—kv; k> 0.

Note: If an object is falling then v is negative, k is positive, and

Fr = —kv is positive.
. d
Newton’s Second Law of Motion: F = md—: = —kv —mg
w_ ko w_
dt  m g o GF=7P 9

k
where p = — > 0 is called the drag coefficient.
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EX. Let’s solve the separable equation Fria —pUv — (.

1 dv dv
—=1 = = dt
—pv—g dt —-pv—g

fdv =fdt

—pv—g
—%ln|—pv—g|+cl =t+c,
1
—;ln|—pv—g| =t+c3
In|—pv—g|=—-pt—c3p
—pv—g <0 so|—pv—g| =pv+gand
In(pv+g) = —pt —c3p
pv +g == e_pt_CBP e e_c3pe_pt

pv = e B3Pe Pl — g

1, _c.p — g
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If v(0) = v, then we have:

1 1
vy =—e P -5 o (g+v0)=—e €3p
p p p p

= () = (UO + %) e Pt — % particular solution.

Notice: v; = Llim v(t) = —% = terminal velocity.
—00

Thus, a falling object has a terminal speed:

_g_mg
oel =7 ==

We can rewrite v(t) as:

v(t) = (vg —vp)e Pt + v, .

If y(t) is the distance of the falling object above the ground then:

d _
d—jt/ =v(t) = (vy —v)e Pt +v,.

Integrating this equation we get:

y(t) = —%(vo —v)e Pl +ut+c
If yo = y(0), then we get: y, = —%(Uo —v)+c
1
y0+;(v0_vr) =C

1
y(t) =yo + vt ‘|‘E(U0 —v)(1 —e™Ph).



Ex. A caristraveling at 88ft/sec (60 mph) and the engine shuts off. After 20

seconds the car is going 11ft/sec. Assume that resistance it encountered while

coasting was proportional to the velocity. How far will the car coast before it
stops?

@=—pv = ——dv=dt
dt pv
1
—f;dv—fdt

—%ln(v) =t+c; ; sincev>0

In(v) = —pt — ¢,

v=ePl™C

v(t) = czePL,

88 = v(0) = c3e% =5
=  v(t) = 88e~Pt.



_ d
v(t) = 88104t = = Now integrate.

dt
88  _
x(t) =——e 104 4+ ¢,
—104
88 88
x(0)=0 = 0=——¢e%+c,s0c=—.
104 104
88 _ 88
x(t) = ——p 104t +_
104 104

lim x(t) = lim (——-e™10% + 2 ) ~ 846 feet.
t—oo t—oo .104 104

When Resistance is Proportional to the Square of the Velocity

Now assume that air (or any) resistance is proportional to the square of the
velocity,
FR = ikvz f k > 0.

The choice of sign has to do with direction of motion. If we take the
upward direction as positive then F < 0 for positive motion. Fp is

always opposite of that of v, we can write:

Fr = —kv|v|.

Newton’s Second Law of Motion gives us:

F=m%=F6+FR=—mg—kv|v| or

= = —g—pvlv]
7t = 9~ pvivl.



Upward Motion: Suppose a projectile is launched upward from an initial

position Y with an initial velocity vg > 0. Then we know:

aw _ _ 2 _ P2
7= 9 pvi=—g(d+7v%)
dv
(1+502) —gdt
dv
f(1+pv2)=f_g dt

Substituting u = (\/g) VU and then resubstituting back we get:

g -1 P
—tan vI|I-l+c, =—gt+cC
\/p (\/g) 1 g 2

g )
v = |= tan(— t +c,). generalsolution.
[t ypgete). g



We know vy = v(0) = \/%tan(q) 50,

- p
tan 1(1)0\/;) = ¢4.

To find the position function y(t) we integrate v(t) = %
g
t) =/ |=tan(— t + cyg)dt
y(®) f\ﬁ (—y/pg t+cy)
Recall: [tanudu = [——du = —In|cosu| + ¢
cosu
1 cos(—,/pg t+cy)
= =(=
y(® (p) In COS Cy L
Downward Motion: vy < 0and v < 0
d
d—:=—g+pv2 (v < 0so|v| = —v)
W a1 —P2
i (1 gv )
1 dv =
1_2172 V= _g dt
g

1
g9



1 -
sinhu E(Qu—e “)

= £ .
coshu Z(eU4e—U
2(e +e~U)

= v(t) = \/%tanh(—@t +c); c= tanh_l(vo\/g).

du = tanh™ ' u + ¢, where tanhu =

1
Recallf1 2

By integrating v(t) we get the position y(t):
cosh(—,/pg t+c)

coshc

1
y(t) =y — ;ln

If vy = 0, then ¢ = tanh™1(0) = 0 so we know,

v(t) = —\/%tanh(@ t) (since tanh(—u) = —tanh(u).)

. _Fe¥—e™)
lim tanh(x) = lim &—— = 1so
X — 00 X—00 E(ex+e_x)
Y T I __ g
U = th_)rglo v(t) gl_)ngo ptanh(,/pg t) .

, , g : ,
Compare this v; with the U = — ; for linear resistance.



Ex. Assume resistance is proportional to the square of the velocity.

How far does the car from the earlier example go in the first minute?

aw _ 2

ac PV

1 —
de——pdt

1
JZdv=[-pdt

_%+C1=_pt+C2

1
—, =Pt + C3
Z=pt—c k v(t) =
=P 3, SO we know = ot—cy
88 = v(0) = — ~=—c
= _—C3' SO we Can say 88_ 3 -
1
v(t) = .
pt+%

1
11 =v(20) = ——, thus p ~.00398.

PTgg
1 dx
v(t) = ——— ==
.00398t+§§ t
1
x(t) =f dt

1
.00398t+§



1
In(.00398¢+)

x(t) =——(oze5 T €

x(0) = 00;833 + ¢, thusc =~ 1,125

In(.00398¢+5)
x(t) = — 0398

x(60) = 777 feet.

+ 1,125.

. _ . . dv dv 2
Notice that unlike the situation where P —pv, when P —pv°,
dv
lim x(t) = co. Thisis because when— = —pv, llm v(t) = 0, and
t—oo dt

v(t) goes to zero “fast enough” so that its integral from zero to oo is finite.

dv )
But when — = —pv?, lim v(t) = 0, but v(t) doesn’t go to zero fast
dt t->oo

enough, so that the integral from zero to infinity is infinite.
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