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Population Models 

 

We have already seen one model for population growth. In that model, one 

assumes a constant rate of growth which is proportional to the population size at 

time 𝑡: 

 

𝑑𝑃

𝑑𝑡
 = 𝑘𝑃(𝑡);   𝑘 > 0.  

 

The general solution is: 

                                           𝑃(𝑡) = 𝑃0𝑒𝑘𝑡. 

 

More generally, we could assume a birth rate, 𝛽(𝑡), and a death rate, 𝛿(𝑡), 
where the rate of change in the population is given by: 

 

                                                
𝑑𝑃

𝑑𝑡
= (𝛽(𝑡) − 𝛿(𝑡))𝑃(𝑡).  

 

If 𝛽(𝑡) − 𝛿(𝑡) = 𝑘, a constant, then we get the first population model. Birth 

and death rates can also depend on the size of the population 𝑃(𝑡). Notice that 

the birth and death rates are percentages of the population. For example, 

suppose the population is 500 at time 𝑡 and the birth rate is 0.02 = 2% per 

year. Then over the next year there will be . 02(500) = 10 births. So the 

absolute birth rate for that year is 10, but the (relative) birth rate is  0.02. 
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Ex.  Suppose a certain lake is stocked with fish and the birth and death rates are 

inversely proportional to √𝑃(𝑡). At the time 𝑡 = 0, 𝑃0 = 100 and after 6 

months there are 169 fish.  a) Find a formula for 𝑃(𝑡).   b) How many fish are 

there after 1 year? 

 

a) 𝛽 =
𝑎

√𝑃
 ,     𝛿 =

𝑏

√𝑃
 ,    where 𝑎, 𝑏 are constants.  

 

         
𝑑𝑃

𝑑𝑡
= (𝛽 − 𝛿)𝑃 = (

𝑎

√𝑃
−

𝑏

√𝑃
) 𝑃  

         
𝑑𝑃

𝑑𝑡
= (𝑎 − 𝑏)√𝑃                                     Now separate variables. 

 

   
1

√𝑃
𝑑𝑃 = (𝑎 − 𝑏)𝑑𝑡  

∫
1

√𝑃
𝑑𝑃 = ∫(𝑎 − 𝑏)𝑑𝑡  

      2√𝑃 = (𝑎 − 𝑏)𝑡 + 𝑐1  

        √𝑃 =
1

2
(𝑎 − 𝑏)𝑡 + 𝑐2         (∗) 

           𝑃 = (
1

2
(𝑎 − 𝑏)𝑡 + 𝑐2)2;          𝑙𝑒𝑡 𝑘 = 𝑎 − 𝑏  

      𝑃(𝑡) = (
1

2
𝑘𝑡 + 𝑐2)2                                   Now find 𝑐2.  

 

 

        100 = 𝑃(0) = (𝑐2)2    ⟹     𝑐2 = 10,  since  𝑐2 ≥ 0  from (∗). 

        𝑃(𝑡) = (
1

2
𝑘𝑡 + 10)2                                   Now find 𝑘. 

 

         169 = 𝑃(6) = (
1

2
𝑘(6) + 10)2  

         169 = (3𝑘 + 10)2  

            13 = 3𝑘 + 10;        3𝑘 + 10 ≠ −13,  else 𝑘 < 0 and 𝑃(𝑡) decreases 

               𝑘 = 1  

 

So      𝑃(𝑡) = (
1

2
𝑡 + 10)2.    

 

b.     𝑃(12) = (
1

2
(12) + 10)2 = 162 = 256 fish after 1 year. 
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In this problem we have: 

                
𝑑𝑃

𝑑𝑡
= (𝑎 − 𝑏)√𝑃 = 𝑘√𝑃 = √𝑃        (since 𝑘 = 1). 

 

Since 𝑃0 = 100,   at 𝑡 = 0: 

                  
𝑑𝑃

𝑑𝑡
= √100 = 10 , 

 

so at 𝑡 = 0 the absolute rate of change of the population is 10 fish per 

month.  

But the relative rate of change (percent rate of growth/decrease) is 

 10 =
𝑑𝑃

𝑑𝑡
= 𝛼𝑃 = 𝛼(100) 

    𝛼 = .1.  

  

Limitations on space, food supply, and other resources could reduce the rate of 

population growth as the population grows. That would give us a population 

model that looks like: 

𝑑𝑃

𝑑𝑡
= (𝑓(𝑃))𝑃(𝑡)  

where 𝑓(𝑃) is a decreasing function of 𝑃. One simple model to use is: 

𝑓(𝑃) = 𝑎 − 𝑏𝑃,   𝑎, 𝑏 > 0 as the decreasing function of 𝑃. 

 

That would give us: 

                                  
𝑑𝑃

𝑑𝑡
= (𝑎 − 𝑏𝑃)𝑃 = 𝑎𝑃 − 𝑏𝑃2  

where 𝑎𝑃 is the absolute birth rate and 𝑏𝑃2 is the absolute death rate (and 𝑎 is 

the relative birth rate and 𝑏𝑃 is the relative death rate) , or equivalently: 

                                   
𝑑𝑃

𝑑𝑡
= 𝑘(𝑀 − 𝑃)𝑃 ;       𝑘 = 𝑏,    𝑀 =

𝑎

𝑏
 .                      

This is called the logistic equation. 
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Ex.   Solve the logistic equation,
𝑑𝑃

𝑑𝑡
 = 𝑘(𝑀 − 𝑃)𝑃,  when 𝑃(0) = 𝑃0 and      

       𝑀 > 𝑃   (population growth). 

  

 We solve this differential equation by separating variables: 

                                   
𝑑𝑃

(𝑀−𝑃)𝑃
= 𝑘𝑑𝑡  

                                 ∫
𝑑𝑃

(𝑀−𝑃)𝑃
= ∫ 𝑘𝑑𝑡 = 𝑘𝑡 + 𝑐1.  

 

 Using partial fractions we get:  

1

(𝑀−𝑃)𝑃
=

𝐴

𝑀−𝑃
+

𝐵

𝑃
=

𝐴𝑃+𝐵𝑀−𝐵𝑃

(𝑀−𝑃)𝑃
=

(𝐴−𝐵)𝑃+𝐵𝑀

(𝑀−𝑃)𝑃
    

 

                                                 1 = 𝐵𝑀           ⇒ 𝐵 =
1

𝑀
  

      0 = 𝐴 − 𝐵      ⇒ 𝐴 =
1

𝑀
 .   

 

                            ∫
𝑑𝑃

(𝑀−𝑃)𝑃
=

1

𝑀
∫(

1

𝑀−𝑃
+

1

𝑃
)𝑑𝑃  

                                               =
− ln|𝑀−𝑃|+ln|𝑃|

𝑀
+ 𝑐2 =

1

𝑀
ln |

𝑃

𝑀−𝑃
| + 𝑐2.  

 

                Since         ∫
𝑑𝑃

(𝑀−𝑃)𝑃
=

1

𝑀
ln |

𝑃

𝑀−𝑃
| + c2 = 𝑘𝑡 + 𝑐1     

                                  ln |
𝑃

𝑀−𝑃
|   = 𝑘𝑀𝑡 + 𝑐3  

                                            |
𝑃

𝑀−𝑃
| = 𝑒𝑘𝑀𝑡+𝑐3 = 𝑒𝑐3𝑒𝑘𝑀𝑡 = 𝑐4𝑒𝑘𝑀𝑡. 
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 𝑀 > 𝑃 > 0    (population growth) so 

                                      |
𝑃

𝑀−𝑃
| =

𝑃

𝑀−𝑃
  

                                          
𝑃

𝑀−𝑃
= 𝑐4𝑒𝑘𝑀𝑡.  

 

 𝑃(0) = 𝑃0 so we know,       
𝑃0

𝑀−𝑃0
= 𝑐4𝑒0 = 𝑐4  

                                                         
𝑃

𝑀−𝑃
=

𝑃0

𝑀−𝑃0
𝑒𝑘𝑀𝑡 .  

 

              Note:  If we had 0 < 𝑀 < 𝑃    (population decrease) we still get: 

                                                        |
𝑃

𝑀−𝑃
| = −

𝑃

𝑀−𝑃
  

             −(
𝑃

𝑀−𝑃
) = 𝑐4𝑒𝑘𝑀𝑡 . 

 𝑃(0) = 𝑃0 so we know,    −(
𝑃0

𝑀−𝑃0
) = 𝑐4𝑒0 = 𝑐4  

                                                    − (
𝑃

𝑀−𝑃
) = −(

𝑃0

𝑀−𝑃0
)𝑒𝑘𝑀𝑡 

                               or                            
𝑃

𝑀−𝑃
= (

𝑃0

𝑀−𝑃0
) 𝑒𝑘𝑀𝑡 . 

So either way we get: 

                        𝑃 = (𝑀 − 𝑃)(
𝑃0

𝑀−𝑃0
)𝑒𝑘𝑀𝑡 

                                   𝑃 = 
𝑀 𝑃0

𝑀−𝑃0
𝑒𝑘𝑀𝑡 − 𝑃(

𝑃0

𝑀−𝑃0
)𝑒𝑘𝑀𝑡. 
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Solving for 𝑃(𝑡) we get: 

𝑃(𝑡) =
𝑀 𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡 .     

 

 Notice: lim
𝑡→∞

𝑃(𝑡) = lim
𝑡→∞

𝑀 𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡 =
𝑀 𝑃0

𝑃0
= 𝑀 

 𝑀 is called the carrying capacity of the environment. 

 If 𝑃0 < 𝑀 then 
𝑀 𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡 =
𝑀 𝑃0

𝑃0+(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟)
< 𝑀  

If 𝑃0 > 𝑀 then 
𝑀 𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡 =
𝑀 𝑃0

𝑃0+(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟)
> 𝑀. 

 

Ex.  Solve  
𝑑𝑥

𝑑𝑡
= 3𝑥(5 − 𝑥),   𝑥(0) = 8 (i.e., don't use the formula we derived).   

 

                  
𝑑𝑥

𝑑𝑡
= 3𝑥(5 − 𝑥)    

            
𝑑𝑥

𝑥(5−𝑥)
= 3 𝑑𝑡  

          ∫
𝑑𝑥

𝑥(5−𝑥)
= ∫ 3 𝑑𝑡 = 3𝑡 + 𝑐1  

 

              
1

𝑥(5−𝑥)
=

𝐴

𝑥
+

𝐵 

5−𝑥
  

            
1

𝑥(5−𝑥)
=

𝐴(5−𝑥)+𝐵𝑥

𝑥(5−𝑥)
  

 

                        1 = 𝐴(5 − 𝑥) + 𝐵𝑥 = 5𝐴 + (𝐵 − 𝐴)𝑥 
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                             5𝐴 = 1     ⇒ 𝐴 =
1

5
  

                        𝐵 − 𝐴 = 0     ⇒ 𝐵 =
1

5
   

 

                  
1

𝑥(5−𝑥)
=

1

5
(

1

𝑥
+

1

5−𝑥
).  

 

                      ∫
1

5
(

1

𝑥
+

1

5−𝑥
) 𝑑𝑥 =

1

5
(ln 𝑥 − ln |5 − 𝑥|) + 𝑐2     

     
1

5
(ln |𝑥| − ln |5 − 𝑥|) + 𝑐2 = 3𝑡 + 𝑐1  

                                    
1

5
ln |

𝑥

5−𝑥
| = 3𝑡 + 𝑐3  

                                        ln|
𝑥

5−𝑥
| = 15𝑡 + 𝑐4  

                                            |
𝑥

5−𝑥
| = 𝑒15𝑡+𝑐4 = 𝑐5𝑒15𝑡.  

 

𝑥(0) = 8 

                                            |
8

5−8
| = 𝑐5𝑒0 = 𝑐5     ⟹ 𝑐5 =

8

3
 . 

                                    |
𝑥

5−𝑥
| =

8

3
𝑒15𝑡 ;    but 

𝑥

5−𝑥
< 0, for 𝑡 > 0, so 

                                   −(
𝑥

5−𝑥
) =

8

3
𝑒15𝑡  

                                      (
𝑥

5−𝑥
) = −

8

3
𝑒15𝑡 

                𝑥 = −
8

3
𝑒15𝑡(5 − 𝑥)  

                     𝑥 = −
40

3
𝑒15𝑡 +

8

3
𝑥𝑒15𝑡  
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                            𝑥 −
8

3
𝑒15𝑡𝑥 = −

40

3
𝑒15𝑡  

                         𝑥(1 −
8

3
𝑒15𝑡) = −

40

3
𝑒15𝑡    

                                                𝑥 =
−

40

3
𝑒15𝑡

1−
8

3
𝑒15𝑡

=
40𝑒15𝑡

−3+8𝑒15𝑡    

                                           𝑥(𝑡) =
40

8−3𝑒−15𝑡 .  

 

Ex.  Consider a population 𝑃(𝑡) of rabbits that satisfies the logistic equation: 
𝑑𝑃

𝑑𝑡
= 𝑎𝑃 − 𝑏𝑃2, where we think of 𝑎𝑃 as the (absolute) birth rate and 𝑏𝑃2 as 

the (absolute) death rate. The initial population is 120 rabbits, and there are 8 

births per month and 6 deaths per month at time 𝑡 = 0. How many months does 

it take for 𝑃(𝑡) to reach 95% of the limiting population 𝑀?     

 

 𝑃0 = 120 

initial birth rate= 8 = 𝑎𝑃0 = 120𝑎 ,           ⟹          𝑎 =
8

120
=

1

15
  

initial death rate= 6 = 𝑏𝑃0
2 = (120)2𝑏,   ⟹      𝑏 =

6

(120)2 =
1

2400
   

 

                 
𝑑𝑃

𝑑𝑡
= 𝑎𝑃 − 𝑏𝑃2 = 𝑏𝑃(

𝑎

𝑏
− 𝑃);   

                   let 𝑘 = 𝑏 =
1

2400
 , 𝑀 =

𝑎

𝑏
=

1

15
1

2400

= 160.  
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                    𝑃(𝑡) =
𝑀 𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡  

               . 95(𝑀) =
𝑀 𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡  

              . 95 = 
𝑃0

𝑃0+(𝑀−𝑃0)𝑒−𝑘𝑀𝑡 =
120

120+(160−120)𝑒
−(

1
2400

)(160)𝑡
 

                        . 95 =
120

120+40𝑒
−

𝑡
15

   

            (. 95) (120 + 40𝑒−
𝑡

15) = 120  

(. 95)(120) + (. 95)(40)𝑒−
𝑡

15 = 120  

                                         38𝑒−
𝑡

15 = 6 

                                              𝑒−
𝑡

15 =
6

38
    ⟹   −

𝑡

15
= ln (

6

38
). 

𝑡 ≈ 27.69 months to reach 95% of the limiting population.  


