We have already seen one model for population growth. In that model, one assumes a constant rate of growth which is proportional to the population size at time t :

$$
\frac{dP}{dt} = kP(t); \ \ k > 0.
$$

The general solution is:

$$
P(t) = P_0 e^{kt}.
$$

More generally, we could assume a birth rate, $\beta(t)$, and a death rate, $\delta(t)$, where the rate of change in the population is given by:

$$
\frac{dP}{dt} = (\beta(t) - \delta(t))P(t).
$$

If $\beta(t) - \delta(t) = k$, a constant, then we get the first population model. Birth and death rates can also depend on the size of the population $P(t)$. Notice that the birth and death rates are percentages of the population. For example, suppose the population is 500 at time t and the birth rate is $0.02 = 2\%$ per year. Then over the next year there will be $.02(500) = 10$ births. So the absolute birth rate for that year is 10, but the (relative) birth rate is 0.02 .

Ex. Suppose a certain lake is stocked with fish and the birth and death rates are inversely proportional to $\sqrt{P(t)}$. At the time $t = 0$, $P_0 = 100$ and after 6 months there are 169 fish. a) Find a formula for $P(t)$. b) How many fish are there after 1 year?

a)
$$
\beta = \frac{a}{\sqrt{p}}
$$
, $\delta = \frac{b}{\sqrt{p}}$, where *a*, *b* are constants.

$$
\frac{dP}{dt} = (\beta - \delta)P = \left(\frac{a}{\sqrt{P}} - \frac{b}{\sqrt{P}}\right)P
$$
\n
$$
\frac{dP}{dt} = (a - b)\sqrt{P}
$$
\nNow separate variables.
\n
$$
\frac{1}{\sqrt{P}}dP = (a - b)dt
$$
\n
$$
2\sqrt{P} = (a - b)t + c_1
$$
\n
$$
\sqrt{P} = \frac{1}{2}(a - b)t + c_2 \quad (*)
$$
\n
$$
P = (\frac{1}{2}(a - b)t + c_2)^2; \quad let \ k = a - b
$$
\n
$$
P(t) = (\frac{1}{2}kt + c_2)^2
$$
\nNow find c_2 .

$$
100 = P(0) = (c_2)^2 \implies c_2 = 10, \text{ since } c_2 \ge 0 \text{ from (*)}.
$$

$$
P(t) = (\frac{1}{2}kt + 10)^2
$$
Now find k.

$$
169 = P(6) = \left(\frac{1}{2}k(6) + 10\right)^2
$$

\n
$$
169 = (3k + 10)^2
$$

\n
$$
13 = 3k + 10; \qquad 3k + 10 \neq -13, \text{ else } k < 0 \text{ and } P(t) \text{ decreases}
$$

\n
$$
k = 1
$$

So
$$
P(t) = (\frac{1}{2}t + 10)^2
$$
.

b.
$$
P(12) = (\frac{1}{2}(12) + 10)^2 = 16^2 = 256
$$
 fish after 1 year.

In this problem we have:

$$
\frac{dP}{dt} = (a - b)\sqrt{P} = k\sqrt{P} = \sqrt{P}
$$
 (since $k = 1$).

Since
$$
P_0 = 100
$$
, at $t = 0$:
\n $\frac{dP}{dt} = \sqrt{100} = 10$,

so at $t = 0$ the absolute rate of change of the population is 10 fish per month.

But the relative rate of change (percent rate of growth/decrease) is

$$
10 = \frac{dP}{dt} = \alpha P = \alpha(100)
$$

$$
\alpha = .1.
$$

Limitations on space, food supply, and other resources could reduce the rate of population growth as the population grows. That would give us a population model that looks like:

$$
\frac{dP}{dt} = (f(P))P(t)
$$

where $f(P)$ is a decreasing function of P. One simple model to use is:

 $f(P) = a - bP$, $a, b > 0$ as the decreasing function of P.

That would give us:

$$
\frac{dP}{dt} = (a - bP)P = aP - bP^2
$$

where aP is the absolute birth rate and bP^2 is the absolute death rate (and a is the relative birth rate and bP is the relative death rate), or equivalently:

$$
\frac{dP}{dt} = k(M - P)P; \quad k = b, \quad M = \frac{a}{b}.
$$

This is called the **logistic equation**.

Ex. Solve the logistic equation, $\overline{d}P$ $\frac{dr}{dt} = k (M - P)P$, when $P(0) = P_0$ and $M > P$ (population growth).

We solve this differential equation by separating variables:

$$
\frac{dP}{(M-P)P} = kdt
$$

$$
\int \frac{dP}{(M-P)P} = \int kdt = kt + c_1.
$$

Using partial fractions we get:

$$
\frac{1}{(M-P)P} = \frac{A}{M-P} + \frac{B}{P} = \frac{AP + BM - BP}{(M-P)P} = \frac{(A-B)P + BM}{(M-P)P}
$$

$$
1 = BM \qquad \Rightarrow B = \frac{1}{M}
$$

$$
0 = A - B \qquad \Rightarrow A = \frac{1}{M}.
$$

$$
\int \frac{dP}{(M-P)P} = \frac{1}{M} \int \left(\frac{1}{M-P} + \frac{1}{P}\right) dP
$$

=
$$
\frac{-\ln|M-P| + \ln|P|}{M} + c_2 = \frac{1}{M} \ln \left| \frac{P}{M-P} \right| + c_2.
$$

Since
$$
\int \frac{dP}{(M-P)P} = \frac{1}{M} \ln \left| \frac{P}{M-P} \right| + c_2 = kt + c_1
$$

$$
\ln \left| \frac{P}{M-P} \right| = kMt + c_3
$$

$$
\left| \frac{P}{M-P} \right| = e^{kMt + c_3} = e^{c_3} e^{kMt} = c_4 e^{kMt}.
$$

 $M > P > 0$ (population growth) so

$$
\left|\frac{P}{M-P}\right| = \frac{P}{M-P}
$$

$$
\frac{P}{M-P} = c_4 e^{kMt}.
$$

$$
P(0) = P_0
$$
 so we know, $\frac{P_0}{M - P_0} = C_4 e^0 = C_4$

$$
\frac{P}{M - P} = \frac{P_0}{M - P_0} e^{kMt}.
$$

Note: If we had $0 < M < P$ (population decrease) we still get:

$$
\left|\frac{P}{M-P}\right| = -\frac{P}{M-P}
$$
\n
$$
-(\frac{P}{M-P}) = c_4 e^{kMt}.
$$
\n
$$
P(0) = P_0 \text{ so we know, } -(\frac{P_0}{M-P_0}) = c_4 e^0 = c_4
$$
\n
$$
-(\frac{P}{M-P}) = -(\frac{P_0}{M-P_0}) e^{kMt}
$$
\n
$$
\frac{P}{M-P} = \left(\frac{P_0}{M-P_0}\right) e^{kMt}.
$$

So either way we get:

$$
P = (M - P)(\frac{P_0}{M - P_0})e^{kMt}
$$

$$
P = \frac{M P_0}{M - P_0}e^{kMt} - P(\frac{P_0}{M - P_0})e^{kMt}.
$$

Solving for $P(t)$ we get:

$$
P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}}.
$$

Notice:
$$
\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}} = \frac{MP_0}{P_0} = M
$$

M is called the **carrying capacity** of the environment.

If
$$
P_0 < M
$$
 then $\frac{MP_0}{P_0 + (M - P_0)e^{-kMt}} = \frac{MP_0}{P_0 + (positive\ number)} < M$
\nIf $P_0 > M$ then $\frac{MP_0}{P_0 + (M - P_0)e^{-kMt}} = \frac{MP_0}{P_0 + (negative\ number)} > M$.

Ex. Solve $\frac{dx}{dt} = 3x(5-x)$, $x(0) = 8$ (i.e., don't use the formula we derived).

$$
\frac{dx}{dt} = 3x(5 - x)
$$

$$
\frac{dx}{x(5 - x)} = 3 dt
$$

$$
\int \frac{dx}{x(5 - x)} = \int 3 dt = 3t + c_1
$$

$$
\frac{1}{x(5-x)} = \frac{A}{x} + \frac{B}{5-x}
$$

$$
\frac{1}{x(5-x)} = \frac{A(5-x) + Bx}{x(5-x)}
$$

$$
1 = A(5 - x) + Bx = 5A + (B - A)x
$$

$$
5A = 1 \qquad \Rightarrow A = \frac{1}{5}
$$

$$
B - A = 0 \qquad \Rightarrow B = \frac{1}{5}
$$

$$
\frac{1}{x(5-x)} = \frac{1}{5} \left(\frac{1}{x} + \frac{1}{5-x}\right).
$$

$$
\int \frac{1}{5} \left(\frac{1}{x} + \frac{1}{5-x}\right) dx = \frac{1}{5} \left(\ln x - \ln|5-x|\right) + c_2
$$

$$
\frac{1}{5} \left(\ln|x| - \ln|5-x|\right) + c_2 = 3t + c_1
$$

$$
\frac{1}{5} \ln\left|\frac{x}{5-x}\right| = 3t + c_3
$$

$$
\ln\left|\frac{x}{5-x}\right| = 15t + c_4
$$

$$
\left|\frac{x}{5-x}\right| = e^{15t + c_4} = c_5 e^{15t}.
$$

$$
x(0) = 8
$$

\n
$$
\left| \frac{8}{5-8} \right| = c_5 e^{0} = c_5 \implies c_5 = \frac{8}{3}.
$$

\n
$$
\left| \frac{x}{5-x} \right| = \frac{8}{3} e^{15t} ; \text{ but } \frac{x}{5-x} < 0 \text{, for } t > 0 \text{, so}
$$

\n
$$
-(\frac{x}{5-x}) = \frac{8}{3} e^{15t}
$$

\n
$$
\left(\frac{x}{5-x} \right) = -\frac{8}{3} e^{15t}
$$

\n
$$
x = -\frac{8}{3} e^{15t} (5 - x)
$$

\n
$$
x = -\frac{40}{3} e^{15t} + \frac{8}{3} x e^{15t}
$$

$$
x - \frac{8}{3}e^{15t}x = -\frac{40}{3}e^{15t}
$$

$$
x(1 - \frac{8}{3}e^{15t}) = -\frac{40}{3}e^{15t}
$$

$$
x = \frac{\frac{-40}{3}e^{15t}}{1 - \frac{8}{3}e^{15t}} = \frac{40e^{15t}}{-3 + 8e^{15t}}
$$

$$
x(t) = \frac{40}{8 - 3e^{-15t}}.
$$

Ex. Consider a population $P(t)$ of rabbits that satisfies the logistic equation: $\,dP$ dt $= aP - bP²$, where we think of aP as the (absolute) birth rate and $bP²$ as the (absolute) death rate. The initial population is 120 rabbits, and there are 8 births per month and 6 deaths per month at time $t = 0$. How many months does it take for $P(t)$ to reach 95% of the limiting population M ?

$$
P_0=120
$$

initial birth rate $= 8 = aP_0 = 120a$, $\qquad \Rightarrow \qquad a = \frac{8}{12}$ $\frac{8}{120} = \frac{1}{15}$ 15 initial death rate $= 6 = bP_0^2 = (120)^2 b$, $\implies b = \frac{6}{(120)^2}$ $\frac{6}{(120)^2} = \frac{1}{240}$ 2400

$$
\frac{dP}{dt} = aP - bP^2 = bP(\frac{a}{b} - P);
$$

let $k = b = \frac{1}{2400}$, $M = \frac{a}{b} = \frac{\frac{1}{15}}{\frac{1}{2400}} = 160.$

$$
P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}}
$$

. 95(M) = $\frac{MP_0}{P_0 + (M - P_0)e^{-kMt}}$
. 95 = $\frac{P_0}{P_0 + (M - P_0)e^{-kMt}}$ = $\frac{120}{120 + (160 - 120)e^{-(\frac{1}{2400})(160)t}}$
. 95 = $\frac{120}{120 + 40e^{-\frac{t}{15}}}$
. (95) (120 + 40e^{- $\frac{t}{15}$}) = 120
. (95) (120) + (.95)(40)e^{- $\frac{t}{15}$} = 120
38e^{- $\frac{t}{15}$} = 6
e^{- $\frac{t}{15}$} = $\frac{6}{38}$ $\implies -\frac{t}{15}$ = ln($\frac{6}{38}$).

 $t \approx 27.69$ months to reach 95% of the limiting population.