Population Models

We have already seen one model for population growth. In that model, one
assumes a constant rate of growth which is proportional to the population size at

time t:

dP
e kP(t); k> 0.

The general solution is:

P(t) = Pye’t.

More generally, we could assume a birth rate, §(t), and a death rate, 6 (t),
where the rate of change in the population is given by:

= = (B - 5()P).

If B(t) — 5(t) = k, a constant, then we get the first population model. Birth
and death rates can also depend on the size of the population P(t). Notice that
the birth and death rates are percentages of the population. For example,
suppose the population is 500 at time t and the birth rate is 0.02 = 2% per
year. Then over the next year there will be . 02(500) = 10 births. So the
absolute birth rate for that year is 10, but the (relative) birth rateis 0.02.



Ex. Suppose a certain lake is stocked with fish and the birth and death rates are

inversely proportional to \/P(t). At the time t = 0, P, = 100 and after 6

months there are 169 fish. a) Find a formula for P(t). b) How many fish are
there after 1 year?

a b
a) B = 75 0= = where a, b are constants.

C=@-0P=(%-%)P

VP AP
% = (a —b)\VP Now separate variables.
1
ﬁdP = (a — b)dt

f%dP = [(a — b)dt
2VP = (a = b)t + ¢4
VP=-(a—-b)t+c, (¥
P=Gla—bt+c)%;  letk=a—b
P(t) = Gkt + c;)? Now find c;.

100 = P(0) = (c3)? = ¢, =10, since ¢, = 0 from ().
P(t) = Gkt + 10)? Now find k.

169 = P(6) = (3 k(6) + 10)?
169 = (3k + 10)?

13 =3k + 10; 3k + 10 # —13, else k < 0 and P(t) decreases
k=1

So P(t) = (%t + 10)2.

b.  P(12) = (;(12) + 10)? = 162 = 256 fish after 1 year.



In this problem we have:

%:(a_b)\/ﬁ:k\/;:\/; (since k = 1).

Since P, = 100, att =0:
dap

— =100 = 10,
dt

so at t = 0 the absolute rate of change of the population is 10 fish per

month.
But the relative rate of change (percent rate of growth/decrease) is
10 = 2 = aP = a(100)

a=.1.

Limitations on space, food supply, and other resources could reduce the rate of
population growth as the population grows. That would give us a population
model that looks like:

ap
—=([@®)r©
where f(P) is a decreasing function of P. One simple model to use is:

f(P) =a—bP, a,b > 0 as the decreasing function of P.

That would give us:

ar _ (4 — — 4P — Hp2
dt—(a bP)P = aP — bP

where aP is the absolute birth rate and bP? is the absolute death rate (and a is

the relative birth rate and bP is the relative death rate) , or equivalently:

%=k(M—P)P; k=b, M=

This is called the logistic equation.
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dP
Ex. Solve the logistic equation,a = k(M — P)P, when P(0) = P, and

M > P (population growth).

We solve this differential equation by separating variables:

ap
TEST kdt
ap
f(M_P)P = [ kdt = kt + ;.

Using partial fractions we get:

1 A B _ AP+BM-BP _ (A-B)P+BM
(M=P)P M-P P  (M=P)P  (M—P)P
1
1=BM = B =—
M
0=A—-B =A=-.
M

dap 1 1 1
o= =5 =+ )dP

(M—P)P
—In|M—-P|+In|P 1 P
= | | | |+C2=_ln|_|+C2.
M M M-P
) ap 1 P .
Since f(M_P)P = Mln |M—P| +cy =kt+cy

P
L
M-P

P
|M P| = ekMt+cs — pCaghMt — (o kMt



M > P >0 (population growth) so

oAl =
M-P M-P

= C4€kMt.
M-P
_ Po _ . 0_
P(0) = P, so we know, = Cp€° = (4
M—P,
P P

Note: Ifwehad 0 < M < P (population decrease) we still get:

ol = 0
M-Pl ~  M-P
P
_( — C4ekMt .
M-P
— Po \ _ 0 —
P(0) = Py sowe know, —( ) = Cu€° =y
M-P,
I
M—P M—P,
P P
M—P M—P,

So either way we get:
_ _ Po ~ kMt
P=(M~-P)G5)e

MP P
P = 0 pkMt _ P( 0 )ekMt_
M-P, M-Py



Solving for P(t) we get:

_ M Py
P(t) = Po+(M—Pg)e kMt
T o M P, __ MPy _
Notice: gl)rgp(t) — th—)rg P0+(M—P0)€_kMt o PO o M

M is called the carrying capacity of the environment.

M P, M P,
If P, < M then = —
Po+(M—Pg)e Po+(positive number)

M Po _ M P
Po+(M—Pg)e— kMt~ py+(negative number)

If P, > M then

d
Ex. Solve d—: = 3x(5 —x), x(0) = 8 (i.e., don't use the formula we derived).

dx

i 3x(5 — x)
dx
e 3dt
dx
fx(S—x)_fgdt_St-l_Cl
1 _4A_ B
x(5—x)  x  5—x
1 __ A(5-x)+Bx
x(5—x) o x(5—x)

1=AG—-x)+Bx =54+ (B—A4)x



1 1/1 1
TG g(; T a)-

1,1 1 1
J:GC+z)de=c(nx—In|5—x]) +c;
=(njx| = In|5 —x|) + ¢, = 3t + 4
1 x
Ell’ll;l —3t+C3

1n|5’+x|=151:+c4

X
|5_x| — elSt+c4 — C5€15t.
x(0) =8
8
| |—C56 = Cg =>C5=§
8 X
|—|=—615t; but—— < 0, fort > 0, so
5—-x 3 5—-x
X =§ 15t
5—-x 3
X 8
( )=__e15t
5—-x 3
__§ 15t 5 —
x=—ze (5—x)
40 8
x = — 20 15t | 8,15t

3 3



8 40
_ 815t — 20 15t
3 3

_ 8 15ty _ _ 40
x(1 S e ) ;

X

elSt

40 15t
—?e _ 40815t

1-8p15t = —348el5t
3

X =

40
x(t) = 8—3e~ 15"

Ex. Consider a population P(t) of rabbits that satisfies the logistic equation:

ap

P aP — bPZ, where we think of aP as the (absolute) birth rate and bP? as

the (absolute) death rate. The initial population is 120 rabbits, and there are 8
births per month and 6 deaths per month at time ¢ = 0. How many months does
it take for P (t) to reach 95% of the limiting population M?

Py =120
8 1
initial birth rate= 8 = aPy = 120a, = a=—=—
120 15
6 1

_— ¢ _hD 2 _ 2 —
initial death rate= 6 = bP,” = (120)“h, = b = (120)2 _ 2400

d
2 _ ap - bP? = bPE - P);
dt b

1

lethk=b=— , M=2=-1 = 160.
2400 b _—
2400




M Py

P(t) = Po+(M—Pg)e kMt

_ M P,

-95(M) = Po+(M—Py)e kMt
B P, _ 120
- - - 1

Po+(M=Po)e™ Mt ) 0 1 (160—120)e~ Fao (160t
120
.95 =

t
120+40e 15

(.95) (120 + 406_1_1;) =120

(.95)(120) + (.95)(40)e ™15 = 120

t

38e 15 =6

t = 27.69 months to reach 95% of the limiting population.



