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                      Some Substitution Methods and Exact Equations 

 

 Sometimes one can make substitutions in a differential equation that can 

            transform the equation into one you know how to solve. 

 Suppose we have: 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦).    

 We might be able to make a substitution  𝑣 = 𝛼(𝑥, 𝑦) to get an equation 

            in 𝑣 and 𝑥 instead of 𝑦 and 𝑥 that we can solve. 

 

 Ex.  Solve  
𝑑𝑦

𝑑𝑥
= (𝑥 + 𝑦 + 3)2. 

 

       Let 𝑣 = 𝑥 + 𝑦 + 3 so 𝑦 = 𝑣 − 𝑥 − 3 and 

𝑑𝑦

𝑑𝑥
=

𝑑𝑣

𝑑𝑥
− 1.     

      Now substitute into 
𝑑𝑦

𝑑𝑥
= (𝑥 + 𝑦 + 3)2: 

                                         
𝑑𝑣

𝑑𝑥
− 1 = 𝑣2  so,     

𝑑𝑣

𝑑𝑥
= 1 + 𝑣2. 

               Now separate the variables:     
𝑑𝑣

1+𝑣2 = 𝑑𝑥  

                ∫
𝑑𝑣

1+𝑣2 = ∫ 𝑑𝑥  

         tan−1 𝑣 + 𝑐1 = 𝑥 + 𝑐2 

                     tan−1 𝑣 = 𝑥 + 𝑐3 

                                                                       𝑣 = tan(𝑥 + 𝑐3). 
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                                                  𝑣 = 𝑥 + 𝑦 + 3 so, 

                               𝑥 + 𝑦 + 3 = tan(𝑥 + 𝑐3)     

        or                                   𝑦 = tan(𝑥 + 𝑐3) − 𝑥 − 3.  

 

So differential equations of the form 
𝑑𝑦

𝑑𝑥
= 𝐹(𝑎𝑥 + 𝑏𝑦 + 𝑐) can be 

transformed into separable equations by making the substitution  

𝑣 = 𝑎𝑥 + 𝑏𝑦 + 𝑐. 

 

Homogeneous Equations  

𝑓(𝑥, 𝑦) is a homogeneous function if 𝑓(𝑡𝑥, 𝑡𝑦) = 𝑓(𝑥, 𝑦). 

 

Ex.  𝑓(𝑥, 𝑦) =
𝑥2+2𝑦2

3𝑥2−5𝑥𝑦
  is homogeneous since:       

𝑓(𝑡𝑥, 𝑡𝑦) =  
(𝑡𝑥)2+2(𝑡𝑦)2

3(𝑡𝑥)
2

−5(𝑡𝑥)(𝑡𝑦)
=

𝑡2(𝑥2+2𝑦2)

𝑡2(3𝑥2−5𝑥𝑦)
=

𝑥2+2𝑦2

3𝑥2−5𝑥𝑦
= 𝑓(𝑥, 𝑦).  

 

Another way of saying this is that we can write 𝑓(𝑥, 𝑦) = 𝐹(
𝑦

𝑥
). 

 

Ex.   𝑓(𝑥, 𝑦) =  
𝑥2+2𝑦2

3𝑥2−5𝑥𝑦
=

𝑥2(1+2
𝑦2

𝑥2)

𝑥2(3−5(
𝑦
𝑥

))
=

(1+2(
𝑦
𝑥

)
2

)

3−5(
𝑦
𝑥

)
        

 So if 𝑣 =
𝑦

𝑥
, 𝑓(𝑥, 𝑦) = 𝐹(𝑣) =

1+2𝑣2

3−5𝑣
 .       
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 Given a differential equation in the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) = 𝐹(

𝑦

𝑥
)    

          make the substitution 𝑣 =
𝑦

𝑥
 . 

 So 𝑦 = 𝑣𝑥 and 
𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
 .   

          Substituting into 
𝑑𝑦

𝑑𝑥
= 𝐹(

𝑦

𝑥
) we get: 

                           𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
= 𝐹(𝑣)  or   𝑥

𝑑𝑣

𝑑𝑥
= 𝐹(𝑣) − 𝑣. 

 We can now separate variables: 

                           
1

𝐹(𝑣)−𝑣
𝑑𝑣 =

1

𝑥
𝑑𝑥. 

 Now integrate both sides of the equation. 

 

Ex.  Solve 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥2 + 5𝑦2 

 

           First put this in the form:    
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

     
𝑑𝑦

𝑑𝑥
 =

2𝑥2+5𝑦2

2𝑥𝑦
 . 

           Notice that 𝑓(𝑥, 𝑦) =
2𝑥2+5𝑦2

2𝑥𝑦
  is homogenous since: 

                       𝑓(𝑡𝑥, 𝑡𝑦) =
2(𝑡𝑥)

2
+5(𝑡𝑦)

2

2(𝑡𝑥)(𝑡𝑦)
=

2𝑥2+5𝑦2

2𝑥𝑦
 .       

             Now write 𝑓(𝑥, 𝑦) = 𝐹(
𝑦

𝑥
): 

                       
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) =

2𝑥2+5𝑦2

2𝑥𝑦
= (

𝑥

𝑦
) +

5

2
(

𝑦

𝑥
) . 
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 Let 𝑦 = 𝑣𝑥,   
𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
 ,    𝑣 =

𝑦

𝑥
,    

1

𝑣
=

𝑥

𝑦
     

                                𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
=

1

𝑣
+

5

2
(𝑣)  

                                         𝑥
𝑑𝑣

𝑑𝑥
=

1

𝑣
+

3𝑣

2
=

3𝑣2+2

2𝑣
     (now separate variables) 

                                
2𝑣

3𝑣2+2
𝑑𝑣 =

1

𝑥
𝑑𝑥  

                             ∫
2𝑣

3𝑣2+2
𝑑𝑣 = ∫

1

𝑥
𝑑𝑥  

                 
1

3
ln(3𝑣2 + 2) + 𝑐1 = ln|𝑥| + 𝑐2 

                             ln(3𝑣2 + 2) = 3ln|𝑥| + 𝑐3 

       𝑒ln(3𝑣2+2) = 𝑒3 ln|𝑥|+𝑐3 = 𝑒ln|𝑥|3
∙ 𝑒𝑐3  

                                      3𝑣2 + 2 = 𝑐4|𝑥|3;    𝑐4 = 𝑒𝑐3 > 0. 

 

 

Substitute back 𝑣 =
𝑦

𝑥
  and we get the general solution:   

              
3𝑦2

𝑥2  +2 = 𝑐|𝑥|3   or   3𝑦2 + 2𝑥2 = 𝑐|𝑥|5,      where 𝑐 > 0.  
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Ex.      Solve   𝑥2 𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑥𝑦 + 𝑦2 

 

 
𝑑𝑦

𝑑𝑥
=

𝑥2+𝑥𝑦+𝑦2

𝑥2 ;      Notice 
𝑥2+𝑥𝑦+𝑦2

𝑥2 = 1 +
𝑦

𝑥
+

𝑦2

𝑥2  is homogeneous. 

            
𝑑𝑦

𝑑𝑥
= 1 +

𝑦

𝑥
+

𝑦2

𝑥2 .  

 

Let 𝑦 = 𝑣𝑥 ,   
𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
 ,    𝑣 =

𝑦

𝑥
 ;      so we get by substituting: 

             𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
= 1 + 𝑣 + 𝑣2             (separate variables)    

            
1

1+𝑣2 𝑑𝑣 =
1

𝑥
𝑑𝑥  

          ∫
1

1+𝑣2 𝑑𝑣 = ∫
1

𝑥
𝑑𝑥  

               tan−1(𝑣) + 𝑐1 = ln|𝑥| + 𝑐2 

               tan−1(𝑣) = ln|𝑥| + 𝑐3 

               tan−1(
𝑦

𝑥
) = ln|𝑥| + 𝑐3     

                                        
𝑦

𝑥
= tan(ln|𝑥| + 𝑐3) 

                                        𝑦 = 𝑥 tan(ln|𝑥| + 𝑐3)         general solution. 

 

 

 

 

 



6 
 

Exact Differential Equations 

If we have a differential equation of the form 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0 

when is 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(𝐹(𝑥, 𝑦)) (called Exact in this case)? 

 

If we think of 𝑦 as a function of 𝑥, using the chain rule the RHS becomes: 

𝑑

𝑑𝑥
(𝐹(𝑥, 𝑦)) = 𝐹𝑥 + 𝐹𝑦

𝑑𝑦

𝑑𝑥
 .  

 

So 𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(𝐹(𝑥, 𝑦)) = 𝐹𝑥 + 𝐹𝑦 

𝑑𝑦

𝑑𝑥
 when: 

𝑀(𝑥, 𝑦) =
𝜕𝐹

𝜕𝑥
,     𝑁(𝑥, 𝑦) =

𝜕𝐹

𝜕𝑦
 .       

 

If that’s the case, then 𝐹(𝑥, 𝑦) = 𝑐 is the general solution to:  

     𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0. 

 

 

 

If we are given a differential equation of the form: 

𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0  

       Or equivalently: 

 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0, 
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1) How do we know if 𝑀(𝑥, 𝑦) = 𝐹𝑥 and 𝑁(𝑥, 𝑦) = 𝐹𝑦 for some 𝐹(𝑥, 𝑦)? 

 

2) If we know 𝑀(𝑥, 𝑦) = 𝐹𝑥 and 𝑁(𝑥, 𝑦) = 𝐹𝑦 for some and 𝐹(𝑥, 𝑦), how 

do we find that function?  

 

3) If we can find and 𝐹(𝑥, 𝑦) such that 𝑀(𝑥, 𝑦) = 𝐹𝑥 and 𝑁(𝑥, 𝑦) = 𝐹𝑦 then 

𝐹(𝑥, 𝑦) = 𝑐 is the general solution to: 

𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
= 0  

or equivalently: 

                                            𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0. 

 

Notice that if 𝐹(𝑥, 𝑦) has continuous second partial derivatives then  

𝐹𝑥𝑦 = 𝐹𝑦𝑥. 

So if     𝑀(𝑥, 𝑦) = 𝐹𝑥    

            𝑁(𝑥, 𝑦) = 𝐹𝑦   

 

then  𝑀𝑦(𝑥, 𝑦) = 𝐹𝑥𝑦 

          𝑁𝑥(𝑥, 𝑦) = 𝐹𝑦𝑥 .  

 

 So a necessary condition for 𝑀(𝑥, 𝑦) = 𝐹𝑥  and 𝑁(𝑥, 𝑦) = 𝐹𝑦 is that  

          𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦). So if 𝑀𝑦 ≠ 𝑁𝑥 then: 

𝑀(𝑥, 𝑦) + 𝑁(𝑥, 𝑦)
𝑑𝑦

𝑑𝑥
≠

𝑑

𝑑𝑥
(𝐹(𝑥, 𝑦)).  
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Theorem: 

Suppose 𝑀(𝑥, 𝑦) and 𝑁(𝑥, 𝑦) have continuous partial derivatives in the open 

rectangle: 

𝑎 < 𝑥 < 𝑏 ,   𝑐 < 𝑦 < 𝑑 

Then the differential equation  

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

is exact if, and only if,  

𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
  

at each point in the rectangle. 

 

 

Ex.  Solve (𝑥3 +
𝑦

𝑥
) 𝑑𝑥 + (𝑦2 + ln 𝑥)𝑑𝑦 = 0,    𝑥 > 0. 

 

   𝑀(𝑥, 𝑦) = 𝑥3 +
𝑦

𝑥
 ,        𝑁(𝑥, 𝑦) = 𝑦2 + ln 𝑥  

𝑀𝑦 =
1

𝑥
 ,                          𝑁𝑥 =

1

𝑥
 .    

 So the differential equation is exact for 𝑥 > 0. 

 Now we have to find 𝐹(𝑥, 𝑦) such that: 

𝜕𝐹

𝜕𝑥
 = 𝑥3 +

𝑦

𝑥
    and    

𝜕𝐹

𝜕𝑦
= 𝑦2 + ln 𝑥.      
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Choose either equation and integrate with respect to the appropriate  

            variable (𝑥 if it’s 𝐹𝑥, 𝑦 if it’s 𝐹𝑦): 

𝐹(𝑥, 𝑦) = ∫ 𝐹𝑥 𝑑𝑥 = ∫ (𝑥3 +
𝑦

𝑥
 ) 𝑑𝑥 =

𝑥4

4
+ 𝑦𝑙𝑛 𝑥 + 𝑔(𝑦).   

 

 Now differentiate 𝐹(𝑥, 𝑦) with respect to the other variable (𝑦) 

𝐹𝑦 = ln(𝑥) + 𝑔′(𝑦). 

 

 But we know that 𝐹𝑦 = 𝑦2 + ln 𝑥 so, 

ln 𝑥 + 𝑔′(𝑦) = 𝑦2 + ln 𝑥 

𝑔′(𝑦) = 𝑦2 

             𝑔(𝑦) =
1

3
𝑦3 + 𝑐.  

          So we now know that: 

                     𝐹(𝑥, 𝑦) =
𝑥4

4
+ 𝑦𝑙𝑛 𝑥 + 𝑔(𝑦) =

𝑥4

4
+ 𝑦𝑙𝑛 𝑥 +

1

3
𝑦3 + 𝑐.  

 

 So this means that the solution to the differential equation is: 

𝐹(𝑥, 𝑦) = 𝑐 

                                    
𝑥4

4
+ 𝑦𝑙𝑛 𝑥 +

1

3
𝑦3 = 𝑐. 
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Ex.  Solve (1 + 𝑥)2𝑑𝑦 − (1 + 𝑦)2𝑑𝑥 = 0. 

   

          here:               𝑀(𝑥, 𝑦) = −(1 + 𝑦)2 ,       𝑁(𝑥, 𝑦) = (1 + 𝑥)2 

                                        𝑀𝑦 = −2(1 + 𝑦),                 𝑁𝑥 = 2(1 + 𝑥). 

𝑀𝑦 ≠ 𝑁𝑥 so the equation is not exact and we have to find another 

 method.  In this case we can separate variables. 

    (1 + 𝑥)2𝑑𝑦 − (1 + 𝑦)2𝑑𝑥 = 0 

(1 + 𝑥)2𝑑𝑦 = (1 + 𝑦)2𝑑𝑥 

                              
1

(1+𝑦)2  𝑑𝑦 =
1

(1+𝑥)2 𝑑𝑥  

                            ∫
1

(1+𝑦)2  𝑑𝑦 = ∫
1

(1+𝑥)2 𝑑𝑥  

                              −
1

1+𝑦
+ 𝑐1 = −

1

1+𝑥
+ 𝑐2  

                                                
1

1+𝑦
=

1

1+𝑥
+ 𝑐3    now take reciprocals   

 

                       1 + 𝑦 = 
1

1

1+𝑥
+𝑐3

=
1

𝑐3(1+𝑥)+1

1+𝑥

=
1+𝑥

1+𝑐3(1+𝑥)
 

                                                           𝑦 =
1+𝑥

1+𝑐3(1+𝑥)
− 1.    
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Reducible Second Order Equations 

A second order differential equation has the form 

                                𝐹(𝑥, 𝑦, 𝑦′, 𝑦") = 0. 

For example, 𝑥𝑦" + 𝑦′ = 4𝑥  and 𝑦" = 2𝑦(𝑦′)3 are second order differential 

equations.  If either 𝑦, the dependent variable, or 𝑥, the independent variable, 

are missing from the second order equation (as in the cases above), then the 

second order equation can be reduced to a first order equation by letting          

𝑝 =
𝑑𝑦

𝑑𝑥
 , where 𝑝 is a function of 𝑥 or 𝑦.      

 

Ex.  Solve 𝑥𝑦" + 𝑦′ = 4𝑥 (missing 𝑦)  by reducing it to a first order differential  

        equation (assume 𝑥 > 0).   

 

 Let 𝑝(𝑥) = 𝑦′ so 𝑝′(𝑥) = 𝑦" and,  𝑥𝑝′(𝑥) + 𝑝(𝑥) = 4𝑥 

 Now we can solve this as follows: 

𝑝′(𝑥) +
1

𝑥
𝑝(𝑥) = 4. 

This is in the form 𝑝′(𝑥) + 𝑅(𝑥)𝑝(𝑥) = 𝑄(𝑥) so we can solve this by 

            finding an integrating factor. 

𝜌(𝑥) = 𝑒∫ 𝑅(𝑥)𝑑𝑥 = 𝑒∫
1

𝑥
𝑑𝑥 = 𝑒ln 𝑥 = 𝑥. 

                        𝑥𝑝′(𝑥) + 𝑝(𝑥) = 4𝑥 

                                
𝑑

𝑑𝑥
(𝑥𝑝(𝑥)) = 4𝑥  

                                          𝑥𝑝(𝑥) = ∫ 4𝑥 = 2𝑥2 + 𝑐1  

                                             𝑝(𝑥) = 2𝑥 +
𝑐1

𝑥
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                                         but 𝑝(𝑥) =
𝑑𝑦

𝑑𝑥
  so,   

                                                  
𝑑𝑦

𝑑𝑥
= 2𝑥 +

𝑐1

𝑥
  

                                                    𝑦 = 𝑥2 + 𝑐1 ln 𝑥 + 𝑐2        general solution. 

 

Ex.   Solve 𝑦" = 2𝑦(𝑦′)3,  (missing 𝑥) by reducing it. 

 

 Notice that this a non-linear differential equation because 𝑦′ is raised to  

            the 3rd power and 𝑦 and 𝑦′ are multiplied. 

  Let 𝑝(𝑥) = 𝑦′            ⟹           𝑦" =
𝑑𝑝

𝑑𝑥
=

𝑑𝑝

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝑝

𝑑𝑝

𝑑𝑦
                                                 

           substituting into 𝑦" = 2𝑦(𝑦′)3  we get:  

 

                             𝑝
𝑑𝑃

𝑑𝑦
 = 2𝑦(𝑝)3          (now separate the variables) 

                              
1

𝑝2

𝑑𝑝

𝑑𝑦
= 2𝑦  

                                   
𝑑𝑝

𝑝2 = 2𝑦𝑑𝑦                   

                                 ∫
𝑑𝑝

𝑃2 = ∫ 2𝑦𝑑𝑦  

                         −
1

𝑝
+ 𝑐1 = 𝑦2 + 𝑐2  

                                   −
1

𝑝
= 𝑦2 + 𝑐3  

                                        
1

𝑝
= −𝑦2 − 𝑐3.  

                                     so,   𝑝 =
1

−𝑦2−𝑐3
 .       
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       𝑝 =
𝑑𝑦

𝑑𝑥
 , so we get:   

                                        
𝑑𝑦

𝑑𝑥
=

−1

𝑦2+𝑐3
            separate variables again 

                       (𝑦2 + 𝑐3)𝑑𝑦 = −𝑑𝑥 

                     ∫(𝑦2 + 𝑐3)𝑑𝑦 = ∫ −𝑑𝑥  

                      
𝑦3

3
+ 𝑐3𝑦 + 𝑐4 = −𝑥 + 𝑐5  

                                             𝑥 = −
1

3
𝑦3 − 𝑐3𝑦 + 𝑐6      general solution. 


