
                                      The Method of Elimination 

 

     Given a differential equation: 

                   𝑎𝑛𝑥(𝑛) + 𝑎𝑛−1𝑥(𝑛−1) + ⋯ + 𝑎1𝑥′ + 𝑎0𝑥 = 𝑓(𝑡) 

 

we can write this as: 

           𝑎𝑛𝐷𝑛(𝑥) + 𝑎𝑛−1𝐷𝑛−1(𝑥) + ⋯ + 𝑎1𝐷(𝑥) + 𝑎0(𝑥) = 𝑓(𝑡) 

where 𝐷(𝑥) =
𝑑𝑥

𝑑𝑡
  and  𝐷𝑛(𝑥) =

𝑑𝑛𝑥

𝑑𝑡𝑛  . 

 

So we can think of: 

            𝐿 = 𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎1𝐷 + 𝑎0 

as acting on a function 𝑥(𝑡).  Thus, we can write our original differential 
equation as  𝐿𝑥 = 𝑓(𝑡). 

 

We call 𝐿 a differential operator.  We define multiplication of operators by: 

                        𝐿1𝐿2(𝑥) = 𝐿1(𝐿2(𝑥)). 

 

For example, suppose we have 𝑎, 𝑏 real numbers and 

                        𝐿1 = 𝐷 + 𝑎,       𝐿2 = 𝐷 − 𝑏. 

Then      𝐿1𝐿2(𝑥) = (𝐷 + 𝑎)[(𝐷 − 𝑏)(𝑥)] 

                                = (𝐷 + 𝑎)(𝐷𝑥 − 𝑏𝑥) 

                                = 𝐷2𝑥 + 𝑎𝐷𝑥 − 𝑏𝐷𝑥 − 𝑎𝑏𝑥 

                                = 𝐷2𝑥 + (𝑎 − 𝑏)𝐷𝑥 − 𝑎𝑏𝑥 = [𝐷2 + (𝑎 − 𝑏)𝐷 − 𝑎𝑏]𝑥. 



Notice that if the coefficients of 𝐿1 and 𝐿2 are constants we get 𝐿1𝐿2 by 
polynomial multiplication and that 𝐿1𝐿2 = 𝐿2𝐿1. 

 

 

     We will now see how solving linear systems of differential equations with 
constant coefficients is similar to solving systems of linear equations that you 
studied in Algebra classes. 

 

     Recall that if we wanted to solve: 

                                    2𝑥 − 3𝑦 = 2 

                            −3𝑥 + 4𝑦 = −4 

We could multiply the first equation by −3 (the coefficient of 𝑥 in the second 
equation) and the second equation by 2 (the coefficient of 𝑥 in the first 
equation) and subtract the first equation from the second equation to 
eliminate the variable 𝑥. 

                                    −6𝑥 + 8𝑦 = −8          (2 times second equation) 

                                    −6𝑥 + 9𝑦 = −6           (−3 times the first equation) 

                                                     −𝑦 = −2      ⇒      𝑦 = 2. 

 

We can then substitute 𝑦 = 2 in either original equation to get 𝑥 = 4. 

 

We will take a similar approach to solving a linear system of differential 
equations with constant coefficients.  We can write that system as: 

                                      𝐿1𝑥 + 𝐿2𝑦 = 𝑓1(𝑡)                       (∗) 

                                      𝐿3𝑥 + 𝐿4𝑦 = 𝑓2(𝑡).                           



Ex.  Write the following linear system in terms of  (∗) : 

                                    𝑥′ = −3𝑥 − 4𝑦 

                                    𝑦′ =  −2𝑥 +   𝑦 

 

Start by bringing all terms to one side of the equation: 

                                    𝑥′ + 3𝑥 + 4𝑦 = 0 

                                2𝑥 +   𝑦′ −  𝑦 = 0 

 

or                            (𝐷 + 3)(𝑥)    + 4𝑦 = 0 

                                  2𝑥 +     (𝐷 − 1)𝑦 = 0. 

So if we let: 

                         𝐿1 = 𝐷 + 3       𝐿2 = 4 

                      𝐿3 = 2                 𝐿4 = 𝐷 − 1,         and 𝑓1(𝑡) = 𝑓2(𝑡) = 0 

Our system of equations has the same form as (∗). 

 

To solve the system of equations given by (∗) we multiply the first equation by 
𝐿3 and the second equation by 𝐿1 (similar to our approach for algebraic 
equations). 

                                               𝐿3𝐿1𝑥 + 𝐿3𝐿2𝑦 = 𝐿3𝑓1(𝑡)                        

                                                L1𝐿3𝑥 + 𝐿1𝐿4𝑦 = 𝐿1𝑓2(𝑡).      

Since all of the 𝐿𝑖′𝑠 have constant coefficients  𝐿3𝐿1𝑥 − 𝐿1𝐿3𝑥 = 0.  

 

 



So subtracting the first equation from the second gives us: 

                                                 (𝐿1𝐿4 − 𝐿3𝐿2)𝑦 = 𝐿1𝑓2 − 𝐿3𝑓1.                 
Now we have a differential equation with only one unknown function 𝑦(𝑡).  We 
can write this resulting equation as: 

                                           |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑦 = |

𝐿1 𝑓1

𝐿3 𝑓2
|. 

 

Similarly, we could have multiplied the first equation in (∗) by 𝐿4 and the 
second equation by 𝐿2 and subtracted to get: 

                                        |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑥 = |

𝑓1 𝐿2

𝑓2 𝐿4
|. 

 

Notice that if  𝑓1(𝑡) = 𝑓2(𝑡) = 0, the right hand side in both cases is 0, and 
the left hand side gives identical differential equations in 𝑥 and 𝑦. 

 

The determinant expressions for the differential equations are reminiscent of 
Cramer’s Rule for solving linear algebraic equations. 

 

Ex.  Find the general solution to the system of equations given by: 

                                             𝑥′ = −3𝑥 − 4𝑦 

                                             𝑦′ =  −2𝑥 +    𝑦. 

 

As we saw in an earlier example: 

                                     𝑥′ + 3𝑥 + 4𝑦 = 0              (∗∗) 

                                2𝑥 +   𝑦′ −  𝑦 = 0 



or                            (𝐷 + 3)(𝑥) +      4𝑦 = 0 

                                  2𝑥 +     (𝐷 − 1)𝑦 = 0. 

So if we let: 

                         𝐿1 = 𝐷 + 3       𝐿2 = 4 

                      𝐿3 = 2                 𝐿4 = 𝐷 − 1,         and 𝑓1(𝑡) = 𝑓2(𝑡) = 0. 

 

Since 𝑓1(𝑡) = 𝑓2(𝑡) = 0 we know: 

                         |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑥 = |

𝑓1 𝐿2

𝑓2 𝐿4
| = 0.    

       

     [𝐿1𝐿4 − 𝐿2𝐿3]𝑥 = [(𝐷 + 3)(𝐷 − 1) − (−2)(4)]𝑥 = 0 

                                                                         [𝐷2 + 2𝐷 + 5]𝑥 = 0 

                                                                            𝑥′′ + 2𝑥′ + 5𝑥 = 0. 

 

The characteristic equation for 𝑥′′ + 2𝑥′ + 5𝑥 = 0 is: 

                                               𝑟2 + 2𝑟 + 5 = 0 

                                        𝑟 =
−2±√4−20

2
= −1 ± 2𝑖. 

 

So the general solution to 𝑥′′ + 2𝑥′ + 5𝑥 = 0 is: 

                                        𝑥(𝑡) = 𝑒−𝑡(𝐴 cos(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡)). 

 

 



Notice that: 

                             |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑦 = 0  

gives us the same differential equation in 𝑦 that we had in 𝑥: 

                          𝑦′′ + 2𝑦′ + 5𝑦 = 0. 

 

Thus the general solution is:    

                        𝑦(𝑡) = 𝑒−𝑡(𝐶𝑐𝑜𝑠(2𝑡) + 𝐸𝑠𝑖𝑛(2𝑡)) 

where, in general,  𝐶 and 𝐸 do not equal 𝐴 and 𝐵. 

 

So far our general solution for this linear system is: 

                               𝑥(𝑡) = 𝑒−𝑡(𝐴 cos(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡)) 

                           𝑦(𝑡) = 𝑒−𝑡(𝐶𝑐𝑜𝑠(2𝑡) + 𝐸𝑠𝑖𝑛(2𝑡)). 

 

Although it looks like there are 4 arbitrary constants 𝐴, 𝐵, 𝐶, and 𝐸, in fact, 
there are only two.  We can see this by plugging the general solutions for 𝑥(𝑡) 
and 𝑦(𝑡) back into either one of the original differential equations. 

 

Differentiating our expression for 𝑥(𝑡) we get: 

 𝑥′(𝑡) = 𝑒−𝑡(−2𝐴𝑠𝑖𝑛(2𝑡) + 2𝐵𝑐𝑜𝑠(2𝑡)) − 𝑒−𝑡(𝐴𝑐𝑜𝑠(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡)). 

 

 

 

 



Plugging into 𝑥′ + 3𝑥 + 4𝑦 = 0  (∗∗) we get: 

 

0 = 𝑒−𝑡(−2𝐴𝑠𝑖𝑛(2𝑡) + 2𝐵𝑐𝑜𝑠(2𝑡)) − 𝑒−𝑡(𝐴𝑐𝑜𝑠(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡)) 

     +3 (𝑒−𝑡(𝐴 cos(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡))) + 4 (𝑒−𝑡(𝐶𝑐𝑜𝑠(2𝑡) + 𝐸𝑠𝑖𝑛(𝑡2)))    

   = 𝑒−𝑡[(2𝐴 + 2𝐵 + 4𝐶) cos(2𝑡) + (−2𝐴 + 2𝐵 + 4𝐸) sin(2𝑡)]. 

 

Since cos(𝑡) and sin(𝑡) are linearly independent we have: 

           2𝐴 + 2𝐵 + 4𝐶 = 0    ⇒          𝐶 = −
1

2
(𝐴 + 𝐵) 

       −2𝐴 + 2𝐵 + 4𝐸 = 0    ⇒         𝐸 =
1

2
(𝐴 − 𝐵). 

Thus the constant 𝐶 and 𝐸 are functions of 𝐴 and 𝐵, i.e., they are not arbitrary 
constants. 

 

This says that the general solution to our system of equations is: 

                              𝑥(𝑡) = 𝑒−𝑡(𝐴 cos(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡)) 

                          𝑦(𝑡) = −
1

2
𝑒−𝑡((𝐴 + 𝐵)𝑐𝑜𝑠(2𝑡) + (𝐵 − 𝐴)𝑠𝑖𝑛(2𝑡)). 

 

 

 

 

 

 

 



     Ex.  Solve the initial value problem: 

                              𝑥′ = −3𝑥 + 2𝑦;         𝑥(0) = 0 

                          𝑦′ = −3𝑥 + 4𝑦;          𝑦(0) = 2. 

 

We start by putting the equations in the form of (∗). 

𝑥′ + 3𝑥 − 2𝑦 = 0 

3𝑥 + 𝑦′ − 4𝑦 = 0. 

Thus we have: 

                 𝐿1 = 𝐷 + 3        𝐿2 = −2 

               𝐿3 = 3                 𝐿4 = 𝐷 − 4;        𝑓1(𝑡) = 𝑓2(𝑡) = 0. 

 

           |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑥 = 0  ;              |

𝐿1 𝐿2

𝐿3 𝐿4
| 𝑦 = 0 .     

     

   [𝐿1𝐿4 − 𝐿2𝐿3]𝑥 = [(𝐷 + 3)(𝐷 − 4) − (−2)(3)]𝑥 = 0 

                                                                         [𝐷2 − 𝐷 − 6]𝑥 = 0 

                                                                            𝑥′′ − 𝑥′ − 6𝑥 = 0. 

 

The characteristic equation for 𝑥′′ − 𝑥′ − 6𝑥 = 0 is: 

                                         𝑟2 − 𝑟 − 6 = 0 

                                 (𝑟 − 3)(𝑟 + 2) = 0  

                                         𝑟 = 3, −2. 

 



Since 𝑓1(𝑡) = 𝑓2(𝑡) = 0 we get the same differential equation in 𝑦 that we 
get in 𝑥:  𝑦′′ − 𝑦′ − 6𝑦 = 0. 

 

Thus our general solutions are: 

                   𝑥(𝑡) = 𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡 

                𝑦(𝑡) = 𝐶𝑒3𝑡 + 𝐸𝑒−2𝑡. 

 

Next we find the relationships between 𝐴, 𝐵, 𝐶, and 𝐸 by plugging expressions 
for 𝑥(𝑡), 𝑥′(𝑡) and 𝑦(𝑡) into 𝑥′ + 3𝑥 − 2𝑦 = 0. 

 

𝑥′(𝑡) = 3𝐴𝑒3𝑡 − 2𝐵𝑒−2𝑡, so we get: 

0 = 𝑥′ + 3𝑥 − 2𝑦  

 0 = 3𝐴𝑒3𝑡 − 2𝐵𝑒−2𝑡 + 3(𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡) − 2(𝐶𝑒3𝑡 + 𝐸𝑒−2𝑡). 

0 = (6𝐴 − 2𝐶)𝑒3𝑡 + (𝐵 − 2𝐸)𝑒2𝑡 . 

 

Since 𝑒3𝑡  and 𝑒−2𝑡 are linearly independent we have 

         6𝐴 − 2𝐶 = 0       ⇒         𝐶 = 3𝐴 

          𝐵 − 2𝐸 = 0       ⇒          𝐸 =
1

2
𝐵. 

 

Thus the general solution to this system of equations is: 

                       𝑥(𝑡) = 𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡 

                    𝑦(𝑡) = 3𝐴𝑒3𝑡 +
1

2
𝐵𝑒−2𝑡. 

 



Now we can use our initial conditions to find 𝐴 and 𝐵. 

                 0 = 𝑥(0) = 𝐴 + 𝐵 

                2 = 𝑦(0) = 3𝐴 +
1

2
𝐵. 

Solving these equations we get:    𝐴 =
4

5
,   𝐵 = −

4

5
 . 

So the solution to our initial value problem is: 

                       𝑥(𝑡) =
4

5
(𝑒3𝑡 − 𝑒−2𝑡) 

                    𝑦(𝑡) =
2

5
(6𝑒3𝑡 − 𝑒−2𝑡). 

 

Finally, we do an example where 𝑓1(𝑡) and 𝑓2(𝑡) are not the zero function. 

 

Ex.  Find the general solution to the system given by: 

                          𝑥′ = 2𝑥 − 3𝑦 + 2 sin(2𝑡) 

                          𝑦′ = 𝑥 − 2𝑦 − cos(2𝑡). 

 

First we rewrite the equations in terms of: 

                              𝐿1𝑥 + 𝐿2𝑦 = 𝑓1(𝑡) 

                               𝐿3𝑥 + 𝐿4𝑦 = 𝑓2(𝑡).        

 

                                    𝑥′ − 2𝑥 + 3𝑦 = 2 sin(2𝑡) 

                                −𝑥 + 𝑦′ + 2𝑦 = − cos(2𝑡).       

 

 



      𝐿1 = 𝐷 − 2                 𝐿2 = 3,                     𝑓1(𝑡) = 2 sin(2𝑡)      

     𝐿3 = −1                        𝐿4 = 𝐷 + 2,            𝑓2(𝑡) = − cos(2𝑡). 

 

Since 𝑓1(𝑡) and 𝑓2(𝑡) are not zero functions we have: 

               |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑥 = |

𝑓1 𝐿2

𝑓2 𝐿4
|     and     |

𝐿1 𝐿2

𝐿3 𝐿4
| 𝑦 = |

𝐿1 𝑓1

𝐿3 𝑓2
|. 

 

Starting with the equations in 𝑥(𝑡) we get: 

                                       (𝐿1𝐿4 − 𝐿2𝐿3)𝑥 = 𝐿4𝑓1 − 𝐿2𝑓2 

       [(𝐷 − 2)(𝐷 + 2) − 3(−1)]𝑥 = (𝐷 + 2)(2 sin(2𝑡)) − 3(− cos(2𝑡)) 

                                            (𝐷2 − 1)𝑥 = 4 cos(2𝑡) + 4 sin(2𝑡) + 3 cos(2𝑡) 

                                            (𝐷2 − 1)𝑥 = 7 cos(2𝑡) + 4 sin(2𝑡). 

 

So we must solve:   𝑥′′ − 𝑥 = 7 cos(2𝑡) + 4 sin(2𝑡). 

 

Solving the homogenous equation we get: 

                                         𝑥′′ − 𝑥 = 0 

                                      𝑟2 − 1 = 0      ⇒       𝑟 = ±1. 

                            𝑥𝑐(𝑡) = 𝐴𝑒−𝑡 + 𝐵𝑒𝑡. 

 

To find a particular solution we try 𝑥𝑝 = 𝐸𝑐𝑜𝑠(2𝑡) + 𝐹𝑠𝑖𝑛(2𝑡)  

                                                                        𝑥𝑝
′ = −2𝐸𝑠𝑖𝑛(2𝑡) + 2𝐹𝑐𝑜𝑠(2𝑡) 

                                                               𝑥𝑝
′′ = −4𝐸𝑐𝑜𝑠(2𝑡) − 4𝐹𝑠𝑖𝑛(2𝑡). 



Plugging into 𝑥′′ − 𝑥 = 7 cos(2𝑡) + 4 sin(2𝑡) we get: 

 

 −4𝐸𝑐𝑜𝑠(2𝑡) − 4𝐹𝑠𝑖𝑛(2𝑡) − 𝐸𝑐𝑜𝑠(2𝑡) − 𝐹𝑠𝑖𝑛(2𝑡) = 7 cos(2𝑡) + 4 sin(2𝑡) 

                                                 −5𝐸 cos(2𝑡) − 5𝐹𝑠𝑖𝑛(2𝑡) = 7 cos(2𝑡) + 4 sin(2𝑡) 

Thus we get:      𝐸 = −
7

5
 ,      𝐹 = −

4

5
  . 

 

So the general solution to 𝑥′′ − 𝑥 = 7 cos(2𝑡) + 4 sin(2𝑡)  𝑖𝑠: 

                  𝑥(𝑡) = 𝐴𝑒−𝑡 + 𝐵𝑒𝑡 −
1

5
[7 cos(2𝑡) + 4 sin(2𝑡)].       

 

Now we repeat the process for  |
𝐿1 𝐿2

𝐿3 𝐿4
| 𝑦 = |

𝐿1 𝑓1

𝐿3 𝑓2
|. 

The left hand side will give us the same (homogenous) differential equation as 
we had in 𝑥, but the right hand side is different. 

               (𝐿1𝐿4 − 𝐿2𝐿3)𝑦 = 𝐿1𝑓2 − 𝐿3𝑓1   

                        (𝐷2 − 1)𝑦 = (𝐷 − 2)(− cos(2𝑡)) − (−1)(2sin (2𝑡) 

                               𝑦′′ − 𝑦 = 2 sin(2𝑡) + 2 cos(2𝑡) + 2 sin(2𝑡) 

                               𝑦′′ − 𝑦 = 4 sin(2𝑡) + 2 cos(2𝑡). 

 

𝑦𝑐(𝑡) = 𝑚𝑒−𝑡 + 𝑛𝑒𝑡   

 

For a particular solution we try:    𝑦𝑝 = 𝐸𝑐𝑜𝑠(2𝑡) + 𝐹𝑠𝑖𝑛(2𝑡) 

                                                             𝑦𝑝
′ = −2𝐸𝑠𝑖𝑛(2𝑡) + 2𝐹𝑐𝑜𝑠(2𝑡) 

                                                             𝑦𝑝
′′ = −4𝐸𝑐𝑜𝑠(2𝑡) − 4𝐹𝑠𝑖𝑛(2𝑡). 



Plugging into 𝑦′′ − 𝑦 = 4 sin(2𝑡) + 2 cos(2𝑡) we get: 

 

 −4𝐸 cos(2𝑡) − 4𝐹𝑠𝑖𝑛(2𝑡) − 𝐸𝑐𝑜𝑠(2𝑡) − 𝐹𝑠𝑖𝑛(2𝑡) = 4 sin(2𝑡) + 2 cos(2𝑡) 

                                                    −5𝐸𝑐𝑜𝑠(2𝑡) − 5𝐹𝑠𝑖𝑛(2𝑡) = 4 sin(2𝑡) + 2 cos(2𝑡)    

⇒            𝐸 = −
2

5
,    𝐹 = −

4

5
  .       

   

Thus we have:      𝑦(𝑡) = 𝑚𝑒−𝑡 + 𝑛𝑒𝑡 −
1

5
[2 cos(2𝑡) + 4 sin(2𝑡)].  

 

To find the relationships between 𝐴, 𝐵, 𝑚, and 𝑛, we plug expressions for 
𝑥(𝑡), 𝑥′(𝑡), and 𝑦(𝑡) into   0 = 𝑥′ − 2𝑥 + 3𝑦 − 2 sin(2𝑡). 

 

𝑥′(𝑡) = −𝐴𝑒−𝑡 + 𝐵𝑒𝑡 +
14

5
sin(2𝑡) −

8

5
cos(2𝑡).  

 

0 = 𝑥′ − 2𝑥 + 3𝑦 − 2 sin(2𝑡)  

    = −𝐴𝑒−𝑡 + 𝐵𝑒𝑡 +
14

5
sin(2𝑡) −

8

5
cos(2𝑡) 

               −2(𝐴𝑒−𝑡 + 𝐵𝑒𝑡 −
1

5
[7 cos(2𝑡) + 4 sin(2𝑡)])   

                         3(𝑚𝑒−𝑡 + 𝑛𝑒𝑡 −
1

5
[2 cos(2𝑡) + 4 sin(2𝑡)]) − 2sin (2𝑡).   

 

0 = (−3𝐴 + 3𝑚)𝑒−𝑡 + (−𝐵 + 3𝑛)𝑒𝑡. 

 

 



Since 𝑒𝑡  and 𝑒−𝑡 are linearly independent:    

              −3𝐴 + 3𝑚 = 0 

                  −𝐵 + 3𝑛 = 0 . 

 

  ⇒     𝑚 = 𝐴,   𝑛 =
𝐵

3
 

 

So the general solution to this system of equations is given by: 

 

  𝑥(𝑡) = 𝐴𝑒−𝑡 + 𝐵𝑒𝑡 −
1

5
[7 cos(2𝑡) + 4 sin(2𝑡)]       

  𝑦(𝑡) = 𝐴𝑒−𝑡 +
𝐵

3
𝑒𝑡 −

1

5
[2 cos(2𝑡) + 4 sin(2𝑡)].    

 

Note: we could have just as easily solved for the constants 𝐴 and 𝐵 in terms of 
𝑚 and 𝑛 and written all of the constants in the solution in terms of 𝑚 and 𝑛 
instead of 𝐴  and  𝐵.   

  
       

 

 

 

   

 

 

                     


