
                                             First-Order Systems 

 

     Sometimes a process is described by more than one differential equation 
(called a “system” of equations).  For example, suppose you have two masses 
and two springs, one spring connected to a wall and the first mass, and one 
spring connecting the first and second mass.  In addition, you might have an 
external force acting on the second mass.  In this case we might want to know 
the position of the first mass, 𝑥(𝑡), and the position of the second mass, 𝑦(𝑡), 
at any time 𝑡.  Notice that the force on each mass will depend on both 𝑥(𝑡) 
and 𝑦(𝑡).  This leads to a (second order) system of differential equations of the 
form: 

                                       𝑚1𝑥′′ = −𝑘1𝑥 + 𝑘2(𝑦 − 𝑥)       

                                  𝑚2𝑦′′ = −𝑘2(𝑦 − 𝑥) + 𝑓(𝑡) 

Where 𝑘1and 𝑘2 are spring constants and 𝑓(𝑡) is the external force acting on 
the second mass. 

 

 

     A second example of a system (in this case nonlinear) of differential 
equations arises when modelling a predator-prey population.  In this case we 
imagine we have a population, 𝑥(𝑡), of a prey (e.g. rabbits) and , 𝑦(𝑡), of a 
predator (e.g. foxes).  We might assume the following: 

 

1. In the absence of the predator, the population the prey will grow at a rate 

proportional to its current population (i.e. 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥(𝑡), 𝑎 > 0). 

2. In the absence of the prey, the population of the predator will decline at 

a rate proportional to it current population (i.e.,  
𝑑𝑦

𝑑𝑡
= −𝑏𝑦(𝑡), 𝑏 > 0 ) 

3. The number of encounters is proportional to the product of the two 
populations. 
 



This gives rise to a system of differential equations given by: 

                     
𝑑𝑥

𝑑𝑡
= 𝑥(𝑎 − 𝐴𝑦) 

                   
𝑑𝑦

𝑑𝑡
= 𝑦(−𝑏 + 𝐵𝑥) 

where 𝑎, 𝐴, 𝑏, 𝐵 > 0. 

 

     Sometimes we can solve a system of first order linear differential equations 
by turning them into a single differential equation of a higher order. 

 

Ex.  Solve  𝑥′(𝑡) = 𝑦(𝑡) 

                      𝑦′(𝑡) = −𝑥(𝑡). 

 

Notice that if 𝑥′ = 𝑦, then by differentiating this equation we get 𝑥′′ = 𝑦′. 

But we know from the second equation that 𝑦′ = −𝑥.  Thus we have: 

                          𝑥′′ = 𝑦′ = −𝑥,     or       𝑥′′ + 𝑥 = 0. 

The characteristic equation is then: 

                                                𝑟2 + 1 = 0    ⇒     𝑟 = ±𝑖. 

Thus, the general solution for 𝑥′′ + 𝑥 = 0 is: 

                                               𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝑡) + 𝐵𝑠𝑖𝑛(𝑡). 

 

And since 𝑦 = 𝑥′(𝑡), we get: 

                                 𝑦 = 𝑥′(𝑡) = 𝐵𝑐𝑜𝑠(𝑡) − 𝐴𝑠𝑖𝑛(𝑡).   

 

 



So the general solution to our linear system of differential equations is a set of 
parametric equations: 

                                      𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝑡) + 𝐵𝑠𝑖𝑛(𝑡)   

                                      𝑦(𝑡) = 𝐵𝑐𝑜𝑠(𝑡) − 𝐴𝑠𝑖𝑛(𝑡)    

which describes a set of curves in the plane. 

In this case we can see what these curves are by: 

              𝑥2 + 𝑦2 = (𝐴𝑐𝑜𝑠(𝑡) + 𝐵𝑠𝑖𝑛(𝑡))
2

+ (𝐵𝑐𝑜𝑠(𝑡) − 𝐴𝑠𝑖𝑛(𝑡))
2

      

                              = (𝐴2 + 𝐵2) cos2 𝑡 + (𝐴2 + 𝐵2) sin2 𝑡 

                               = 𝐴2 + 𝐵2 

which is a set of circles of radius √𝐴2 + 𝐵2. 

 

Ex.  Solve the initial value problem: 

                       𝑥′ = 𝑦;                          𝑥(0) = 5 

                    𝑦′ = 2𝑥 − 𝑦;               𝑦(0) = −1. 

 

Differentiating the first equation we get: 

                               𝑥′′ = 𝑦′. 

 

Now using the second equation we get: 

                          𝑥′′ = 𝑦′ = 2𝑥 − 𝑦. 

 

Using the first equation again (𝑦 = 𝑥′) we can now substitute into our current 
equation: 

                           𝑥′′ = 𝑦′ = 2𝑥 − 𝑦 = 2𝑥 − 𝑥′. 



Thus we have:                    𝑥′′ + 𝑥′ − 2𝑥 = 0. 

The characteristic equation for this differential equation is: 

                                                        𝑟2 + 𝑟 − 2 = 0 

                                         (𝑟 + 2)(𝑟 − 1) = 0 

                                                  𝑟 = −2, 1. 

So the general solution to 𝑥′′ + 𝑥′ − 2𝑥 = 0 is: 

                                              𝑥(𝑡) = 𝐴𝑒𝑡 + 𝐵𝑒−2𝑡. 

 

We know that 𝑦 = 𝑥′ , so we can find an expression for 𝑦(𝑡) by differentiating 
𝑥(𝑡). 

                                      𝑦(𝑡) = 𝑥′(𝑡) = 𝐴𝑒𝑡 − 2𝐵𝑒−2𝑡. 

 

So our general solution to the system of differential equations is: 

                                              𝑥(𝑡) = 𝐴𝑒𝑡 + 𝐵𝑒−2𝑡 

                                         𝑦(𝑡) = 𝐴𝑒𝑡 − 2𝐵𝑒−2𝑡. 

 

To find 𝐴 and 𝐵 we will use the initial conditions:   𝑥(0) = 5,     𝑦(0) = −1. 

             5 = 𝑥(0) = 𝐴 + 𝐵 

        −1 = 𝑦(0) = 𝐴 − 2𝐵              subtracting we get: 

            6 =                      3𝐵          ⇒    𝐵 = 2, 𝐴 = 3. 

 

So the solution to this initial value system is : 

            𝑥(𝑡) = 3𝑒𝑡 + 2𝑒−2𝑡             𝑦(𝑡) = 3𝑒𝑡 − 4𝑒−2𝑡. 



Ex.  Solve the initial value problem: 

                           𝑥′ =
1

2
𝑦                      𝑥(0) = −2 

                        𝑦′ = −8𝑥                  𝑦(0) = 16. 

 

If we differentiate the first equation we get: 

                          𝑥′′ =
1

2
𝑦′ . 

From the second equation we know that 𝑦′ = −8𝑥 thus: 

                          𝑥′′ =
1

2
𝑦′ =

1

2
(−8𝑥) = −4𝑥. 

 

This is equivalent to:      𝑥′′ + 4𝑥 = 0. 

The characteristic equation for 𝑥′′ + 4𝑥 = 0 is: 

                                               𝑟2 + 4 = 0 

                                                           𝑟 = ±2𝑖. 

 

So the general solution to 𝑥′′ + 4𝑥 = 0 is: 

                                       𝑥(𝑡) = 𝐴𝑐𝑜𝑠(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡). 

 

Using  𝑥′ =
1

2
𝑦  we can find 𝑦(𝑡): 

        𝑥′(𝑡) = −2𝐴𝑠𝑖𝑛(2𝑡) + 2𝐵𝑐𝑜𝑠(2𝑡) =
1

2
𝑦 

          𝑦(𝑡) = −4𝐴𝑠𝑖𝑛(2𝑡) + 4𝐵𝑐𝑜𝑠(2𝑡). 

 



So the general solution to the system of equations is: 

                         𝑥(𝑡) = 𝐴𝑐𝑜𝑠(2𝑡) + 𝐵𝑠𝑖𝑛(2𝑡) 

                      𝑦(𝑡) = −4𝐴𝑠𝑖𝑛(2𝑡) + 4𝐵𝑐𝑜𝑠(2𝑡). 

 

Again we will use the initial conditions to find 𝐴 and 𝐵. 

−2 = 𝑥(0) = 𝐴                 ⇒             𝐴 = −2 

16 = 𝑦(0) = 4𝐵               ⇒              𝐵 = 4. 

 

Thus the solution to this initial value problem is: 

                         𝑥(𝑡) = −2𝑐𝑜𝑠(2𝑡) + 4𝑠𝑖𝑛(2𝑡) 

                      𝑦(𝑡) = 8𝑠𝑖𝑛(2𝑡) + 16𝑐𝑜𝑠(2𝑡). 

 

Notice that these parametric equations describe an ellipse in the plane: 

        (
𝑥

−2
)

2
+ (

𝑦

8
)

2
= (cos(2𝑡) − 2 sin(2𝑡))2 + (2 cos(2𝑡) + sin(2𝑡))2 

                   𝑥
2

4
+

𝑦2

64
= cos2(2𝑡) + 4 sin2(2𝑡) + 4 cos2(2𝑡) + sin2(2𝑡) 

                    𝑥
2

4
+

𝑦2

64
= 5 

                   𝑥
2

20
+

𝑦2

320
= 1. 

 

 

 

 



Theorem: (Existence and Uniqueness for Linear Systems) 

Let      𝑥1
′ = 𝑞11(𝑡)𝑥1 + 𝑞12(𝑡)𝑥2 + ⋯ 𝑞1𝑛(𝑡)𝑥𝑛 + 𝑓1(𝑡) 

            ⋮ 

          𝑥𝑛
′ = 𝑞𝑛1(𝑡)𝑥1 + 𝑞𝑛2(𝑡)𝑥2 + ⋯ 𝑞𝑛𝑛(𝑡)𝑥𝑛 + 𝑓𝑛(𝑡) 

where 𝑞11, … , 𝑞𝑛𝑛, 𝑓1, … , 𝑓𝑛   are continuous functions on an interval 𝐼 
containing 𝑎.  Given 𝑏1, … , 𝑏𝑛, real numbers, the system of differential 
equations has a unique solution with 𝑥1(𝑎) = 𝑏1, … , 𝑥𝑛(𝑎) = 𝑏𝑛. 


