Translation of Laplace Transforms and Partial Fractions

Suppose $R(s) = \frac{P(s)}{Q(s)}$, where P(s) and Q(s) are polynomials, and the degree of P(s) is less than Q(s).

The portion of the partial fraction decomposition of R(s) corresponding to a linear factor (s-a) of multiplicity n is a sum of terms of the form:

$$\frac{A_1}{s-a} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_n}{(s-a)^n}$$

where $A_1, A_2, \dots A_n$ are constants.

Ex. Find the form of the partial fraction expansion of

$$R(s) = \frac{1}{(s^2 - 1)(s + 1)}.$$

$$\frac{1}{(s^2-1)(s+1)} = \frac{1}{(s-1)(s+1)(s+1)} = \frac{1}{(s-1)(s+1)^2}$$
$$\frac{1}{(s-1)(s+1)^2} = \frac{A}{s-1} + \frac{B}{s+1} + \frac{C}{(s+1)^2}.$$

The portion of the partial fraction decomposition corresponding to the irreducible quadratic factor $(s-a)^2+b^2$ of multiplicity n is a sum if n partial fractions of the form:

$$\frac{A_1s+B_1}{(s-a)^2+b^2}+\frac{A_2s+B_2}{((s-a)^2+b^2)^2}+\cdots+\frac{A_ns+B_n}{((s-a)^2+b^2)^n}.$$

Ex. Find the form of the partial fraction expansion for

$$R(s) = \frac{1}{(s-1)^2(s^2+1)^2}.$$

$$\frac{1}{(s-1)^2(s^2+1)^2} = \frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{Cs+D}{s^2+1} + \frac{Es+F}{(s^2+1)^2}.$$

Note: any quadratic polynomial with real coefficients can always put in the form of $(s-a)^2 \pm b^2$ by completing the square.

Ex. Put $s^2 + 8s + 40$ in the form $(s - a)^2 \pm b^2$ by completing the square.

$$s^{2} + 8s + 40 = s^{2} + 8s + 16 - 16 + 40$$
$$= (s + 4)^{2} + 24.$$

Theorem: If $F(s) = \mathcal{L}(f(t))$ exists for s > c, then $\mathcal{L}(e^{at}f(t))$ exists for s > (a+c) and $\mathcal{L}(e^{at}f(t)) = F(s-a)$, or equivalently, $\mathcal{L}^{-1}\big(F(s-a)\big) = e^{at}f(t)$. Thus, the translation $s \to (s-a)$ in the transform corresponds to multiplication of the original function by e^{at} .

Proof:

$$\mathcal{L}(e^{at}f(t)) = \int_0^\infty e^{-st}e^{at}f(t)dt = \int_0^\infty e^{-(s-a)t}f(t)dt = F(s-a).$$

Below is a table relating $\mathcal{L}(f(t))$ to $\mathcal{L}\big(e^{at}f(t)\big)$ for a few functions, $n\in\mathbb{Z}^+$.

$$\frac{f(t)}{t^{n}} \qquad \frac{L(f(t))}{s^{n+1}} \qquad e^{at}f(t) \qquad \frac{L(e^{at}f(t))}{(s-a)^{n+1}} \\
\cos kt \qquad \frac{s}{s^{2}+k^{2}} \qquad e^{at}\cos kt \qquad \frac{s-a}{(s-a)^{2}+k^{2}} \\
\sin kt \qquad \frac{k}{s^{2}+k^{2}} \qquad e^{at}\sin kt \qquad \frac{k}{(s-a)^{2}+k^{2}}$$

Ex. Find $\mathcal{L}(t^3e^{-7t})$.

In this case n=3 and $\alpha=-7$ in the table above.

So
$$\mathcal{L}(t^3 e^{-7t}) = \frac{3!}{(s+7)^4} = \frac{6}{(s+7)^4}$$
.

Ex. Find $\mathcal{L}\left(e^{\frac{t}{2}}\cos 2t\right)$.

In this case
$$a = \frac{1}{2}$$
, $k = 2$. So $\mathcal{L}\left(e^{\frac{t}{2}}\cos 2t\right) = \frac{s - \frac{1}{2}}{\left(s - \frac{1}{2}\right)^2 + 4}$.

Ex. Find the inverse Laplace transform of $F(s) = \frac{s+5}{s^2+4s+5}$.

First complete the square in the denominator (since we can't factor it).

$$\frac{s+5}{s^2+4s+5} = \frac{s+5}{s^2+4s+4-4+5} = \frac{s+5}{(s+2)^2+1}.$$

Now write the numerator in terms of s+2 so we can use our table to find \mathcal{L}^{-1} .

$$\frac{s+5}{s^2+4s+5} = \frac{(s+2)+3}{(s+2)^2+1} = \frac{(s+2)}{(s+2)^2+1} + \frac{3}{(s+2)^2+1}.$$

$$\mathcal{L}^{-1}\left(\frac{s+5}{s^2+4s+5}\right) = \mathcal{L}^{-1}\left(\frac{s+2}{(s+2)^2+1}\right) + \mathcal{L}^{-1}\left(\frac{3}{(s+2)^2+1}\right)$$

$$= e^{-2t}\cos(t) + 3e^{-2t}\sin(t).$$

Ex. Consider a mass, spring, dashpot system with $m=1,\ k=125,$ and, c=10. Suppose x(0)=6 and x'(0)=50. Find x(t).

$$x'' + 10x' + 125x = 0$$
; $x(0) = 6$, $x'(0) = 50$

Now take the Laplace transform of the differential equation and then solve for X(s)

$$\mathcal{L}(x'') + 10\mathcal{L}(x') + 125\mathcal{L}(x) = 0$$

$$[s^{2}X(s) - sx(0) - x'(0)] + 10[sX(s) - x(0)] + 125X(s) = 0$$

$$(s^{2} + 10s + 125)X(s) - 6s - 50 - 60 = 0$$

$$(s^{2} + 10s + 125)X(s) = 6s + 110$$

$$X(s) = \frac{6s + 110}{s^{2} + 10s + 125}.$$

Now complete the square for the expression for X(s).

$$X(s) = \frac{6s+110}{s^2+10s+25+100}$$

$$= \frac{6s+110}{(s+5)^2+100} \quad \text{write the numerator in terms of } s+5$$

$$= \frac{6(s+5)+80}{(s+5)^2+10^2} \, .$$

$$X(s) = 6 \left[\frac{s+5}{(s+5)^2 + 10^2} \right] + 8 \left[\frac{10}{(s+5)^2 + 10^2} \right].$$

Now find \mathcal{L}^{-1} .

Notice that:

$$\mathcal{L}(e^{at}\cos(kt)) = \frac{s-a}{(s-a)^2 + k^2}$$
$$\mathcal{L}(e^{at}\sin(kt)) = \frac{k}{(s-a)^2 + k^2}.$$

So we have:

$$x(t) = \mathcal{L}^{-1}(X(s)) = 6\mathcal{L}^{-1}\left(\frac{s+5}{(s+5)^2 + 10^2}\right) + 8\mathcal{L}^{-1}\left(\frac{10}{(s+5)^2 + 10^2}\right)$$

$$x(t) = e^{-5t} (6\cos 10t + 8\sin 10t).$$

Ex. Solve the initial value problem x'' + 4x' + 13x = 13, with x(0) = x'(0) = 0.

$$\mathcal{L}(x'') + 4\mathcal{L}(x') + 13\mathcal{L}(x) = \mathcal{L}(13)$$
$$[s^2X(s) - sx(0) - x'(0)] + 4[sX(s) - x(0)] + 13X(s) = \frac{13}{s}$$
$$(s^2 + 4s + 13)X(s) = \frac{13}{s}$$
$$X(s) = \frac{13}{s(s^2 + 4s + 13)}.$$

Now write $\frac{13}{s(s^2+4s+13)}$ using partial fractions.

$$\frac{13}{s(s^2+4s+13)} = \frac{A}{s} + \frac{Bs+C}{s^2+4s+13}$$

$$= \frac{A(s^2+4s+13)+(Bs+c)(s)}{s(s^2+4s+13)}$$
So, $13 = A(s^2+4s+13)+(Bs+C)(s)$

$$= (A+B)s^2+(4A+C)s+13A.$$

$$\Rightarrow A+B=0, \ 4A+C=0, \ 13A=13.$$
Solving we get: $A=1, \ B=-1, \ C=-4.$

Thus we have:
$$X(s) = \frac{13}{s(s^2+4s+13)} = \frac{1}{s} - \frac{s+4}{s^2+4s+13}$$
.

Now complete the square on $s^2 + 4s + 13$.

$$\frac{s+4}{s^2+4s+13} = \frac{s+4}{s^2+4s+4-4+13}$$

$$= \frac{s+4}{(s+2)^2+9} \quad \text{write the numerator in terms of } s+2.$$

$$= \frac{s+2}{(s+2)^2+9} + \frac{2}{(s+2)^2+9}$$

$$= \frac{s+2}{(s+2)^2+9} + \frac{2}{3} \left(\frac{3}{(s+2)^2+9} \right)$$

Note: We factored $\frac{2}{3}$ from the second term above to make what's in the parentheses look like the Laplace transform of $e^{at} \sin(kt)$.

Thus we have:

$$X(s) = \frac{1}{s} - \frac{s+2}{(s+2)^2+9} - \frac{2}{3} \left(\frac{3}{(s+2)^2+9} \right).$$

Notice that:

$$\mathcal{L}(1) = \frac{1}{s}$$

$$\mathcal{L}(e^{at}\cos(kt)) = \frac{s-a}{(s-a)^2 + k^2}$$

$$\mathcal{L}(e^{at}\sin(kt)) = \frac{k}{(s-a)^2 + k^2}.$$

$$x(t) = \mathcal{L}^{-1}(X(s))$$

$$= \mathcal{L}^{-1}\left(\frac{1}{s}\right) - \mathcal{L}^{-1}\left(\frac{s+2}{(s+2)^2+9}\right) - \frac{2}{3}\mathcal{L}^{-1}\left(\frac{3}{(s+2)^2+9}\right)$$

$$= 1 - e^{-2t}\cos(3t) - \frac{2}{3}e^{-2t}\sin(3t).$$