The Gamma Function and Bessel Functions

Bessel's equation of order $p \ge 0$ is:

$$x^2y'' + xy' + (x^2 - p^2)y = 0.$$

Solutions are called Bessel functions of order p.

$$y'' + \frac{1}{x}y' + \frac{x^2 - p^2}{x^2}y = 0.$$

So
$$p(x) = 1$$
, $p(0) = 1$; $q(x) = x^2 - p^2$, $q(0) = -p^2$.

Indicial equation:

$$r(r-1) + r - p^{2} = 0$$
$$r^{2} - p^{2} = 0$$
$$r = \pm p.$$

If we substitute $y = \sum_{m=0}^{\infty} c_m x^{m+r}$ into $x^2 y'' + xy' + (x^2 - p^2)y = 0$:

$$x^{2} \sum_{m=0}^{\infty} (m+r)(m+r-1)c_{m}x^{m+r-2} + x \sum_{m=0}^{\infty} (m+r)c_{m}x^{m+r-1} + (x^{2}-p^{2}) \sum_{m=0}^{\infty} c_{m}x^{m+r} = 0$$

$$\begin{split} \sum_{m=0}^{\infty} (m+r)(m+r-1)c_m x^{m+r} + \sum_{m=0}^{\infty} (m+r)c_m x^{m+r} \\ + \sum_{m=0}^{\infty} c_m x^{m+r+2} - \sum_{m=0}^{\infty} p^2 c_m x^{m+r} = 0 \end{split}$$

$$\sum_{m=0}^{\infty} [(m+r)(m+r-1) + (m+r) - p^{2}] c_{m} x^{m+r} + \sum_{m=2}^{\infty} c_{m-2} x^{m+r} = 0$$

$$\sum_{m=0}^{\infty} [(m+r)^2 - p^2] c_m x^{m+r} + \sum_{m=2}^{\infty} c_{m-2} x^{m+r} = 0.$$

$$m = 0$$
: $(r^2 - p^2)c_0 = 0$

so c_0 can be any number because $r^2 - p^2 = 0$.

$$m = 1$$
: $[(1+r)^2 - p^2]c_1 = 0$

since if $r=\pm p$ then $(1+r)^2-p^2\neq 0$, $\Rightarrow c_1=0$, unless $r=-\frac{1}{2}$.

$$m \ge 2$$
:
$$[(m+r)^2 - p^2]c_m + c_{m-2} = 0$$
$$c_m = -\frac{c_{m-2}}{(m+r)^2 - p^2}.$$

Case where r = p > 0:

$$(m+p)^2 - p^2 = m^2 + 2mp$$

So using a_m for c_m , in this case:

$$a_m = -\frac{a_{m-2}}{m^2 + 2mp} = -\frac{a_{m-2}}{m(2p+m)}$$
; for $m \ge 2$.

Because $a_1 = 0$, all odd a_m s are also 0.

$$m = 2: a_2 = -\frac{a_0}{2(2p+2)}$$

$$m = 4: a_4 = -\frac{a_2}{4(2p+4)} = \frac{a_0}{2(4)(2p+2)(2p+4)}$$

$$m = 6: a_6 = -\frac{a_4}{6(2p+6)} = -\frac{a_0}{2(4)(6)(2p+2)(2p+4)(2p+6)}$$

$$\Rightarrow a_{2m} = \frac{(-1)^m a_0}{2(4)(6)\cdots(2m)(2p+2)(2p+4)\cdots(2p+2m)}$$

$$a_{2m} = \frac{(-1)^m a_0}{2^{2m}(m)!(p+1)(p+2)\cdots(p+m)}$$

$$y_1(x) = a_0 \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+p}}{2^{2m}(m)!(p+1)\dots(p+m)}.$$

We saw when p=0, this is the only Frobenius series solution.

Case where r = -p < 0

$$(m-p)^2 - p^2 = m^2 - 2mp = m(m-2p)$$

Now using b_m for c_m we get:

$$b_m = -\frac{b_{m-2}}{m(m-2p)};$$
 for $m \ge 2$.

Once again, b_0 can be any constant and $b_1=0$, unless $r=-\frac{1}{2}$.

Notice if p is either a positive integer or an odd multiple (≥ 3) of $\frac{1}{2}$, then m-2p will equal 0 for some positive integer m. If that happens there will be no solution for $m(m-2p)b_m+b_{m-2}=0$ if $b_{m-2}\neq 0$.

If $p=\frac{k}{2}$, k an odd positive integer, then we don't have a problem because we can choose $b_m=0$ for all odd m. So if p is not a positive integer, we have:

$$b_m = -\frac{b_{m-2}}{m(m-2n)}$$
; $m \ge 2$

And we get:

$$y_2(x) = b_0 \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m-p}}{2^{2m} m! (-p+1)(-p+2)...(-p+m)}.$$

If $r=-rac{1}{2}$ then b_1 is an arbitrary constant and

$$y_2(x) = b_0\left(x^{-\frac{1}{2}}\right)\cos x + b_1\left(x^{-\frac{1}{2}}\right)\sin x.$$

But if $r=\frac{1}{2}$, $y_1(x)=a_0\left(x^{-\frac{1}{2}}\right)sinx$, thus we can take $b_1=0$ above.

The series representation of $y_1(x)$ and $y_2(x)$ converge for x > 0, since x = 0 is the only singular point of the differential equation.

The gamma function

Def. The gamma function is defined as:

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \quad x > 0.$$

a)
$$\Gamma(1) = \int_0^\infty e^{-t} dt = \lim_{b \to \infty} (-e^{-t} \mid_{t=0}^{t=b}) = 1.$$

b)
$$\Gamma(x+1) = x\Gamma(x)$$

Proof:

 $\Gamma(x+1) = \lim_{b \to \infty} \int_0^b e^{-t} t^x \ dt$; integrate by parts:

Let
$$u=t^x$$

$$v=-e^{-t}$$

$$du=xt^{x-1} \qquad dv=e^{-t}dt$$

$$=\lim_{b\to\infty}[-t^xe^{-t}|_{t=0}^{t=b}+x\int_0^b e^{-t}t^{x-1}dt]=x\Gamma(x)$$
 Since $\lim_{b\to\infty}\frac{-b^x}{e^b}=0$ for any $x>0$.

So
$$\Gamma(x+1) = x\Gamma(x)$$
. In particular:

$$\Gamma(2) = 1\Gamma(1) = 1!$$

$$\Gamma(3) = 2\Gamma(2) = 2!$$

$$\Gamma(4) = 3\Gamma(3) = 3!$$

 \Rightarrow $\Gamma(n+1)=n!$ for $n\geq 0$ an integer.

An important special value of the gamma function is:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty e^{-t} t^{-\frac{1}{2}} dt$$

$$\text{Let } u^2 = t$$

$$2u \ du = dt \quad \text{or } 2du = \frac{1}{u} dt = \frac{1}{\sqrt{t}} dt$$

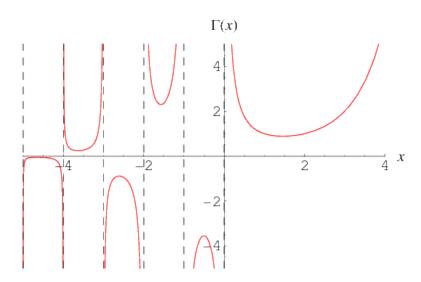
$$\Gamma\left(\frac{1}{2}\right) = 2 \int_0^\infty e^{-u^2} du = \sqrt{\pi} \ .$$

The gamma function, $\Gamma(x)$, is defined for x > 0. However, we can extend its definition to all x < 0 such that x is not a negative integer. We can do this through the relationship:

$$\Gamma(x+1) = x\Gamma(x) \Rightarrow \Gamma(x) = \frac{\Gamma(x+1)}{x}$$
.

For example, if 0 < x+1, then $\Gamma(x+1)$ is defined. We can then define $\Gamma(x) = \frac{\Gamma(x+1)}{x}$ for -1 < x < 0. Now that $\Gamma(x)$ is defined for -1 < x < 0, we can define $\Gamma(x)$, for -2 < x < -1 by $\Gamma(x) = \frac{\Gamma(x+1)}{x}$. Continuing this process we get a definition of $\Gamma(x)$ for all x < 0 such that x is not a negative integer.

Below is a graph of the function $\Gamma(x)$.



Bessel functions of the first kind

The solution to $x^2y^{\prime\prime}+xy^{\prime}+(x^2-p^2)y=0$ corresponding to r=p>0 is

$$y_1(x) = a_0 \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+p}}{2^{2m} (m!) (p+1) \dots (p+m)}.$$

If we choose $a_0 = \frac{1}{2^p \Gamma(p+1)}$; p > 0 and use:

$$\Gamma(p+m+1) = (p+m)(p+m-1) \dots (p+2)(p+1)\Gamma(p+1)$$

which follows from $\Gamma(x+1) = x\Gamma(x)$ we get:

$$y_1(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+p}}{2^{2m} (2^p)(m!)(\Gamma(p+1))(p+1)...(p+m)}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+p}}{2^{2m+p} (m!)\Gamma(m+p+1)}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)\Gamma(m+p+1)} \left(\frac{x}{2}\right)^{2m+p}.$$

This is called the Bessel function of the first kind of order $oldsymbol{p}$ denoted by:

$$J_p(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)\Gamma(m+p+1)} \left(\frac{x}{2}\right)^{2m+p}.$$

Similarly, if p>0 is not an integer, we choose $b_0=\frac{1}{2^{-p}\Gamma(-p+1)}$ in the Frobenius solution corresponding to r=-p and get:

$$y_{2}(x) = b_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m-p}}{2^{2m} (m!) (-p+1) \dots (-p+m)}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m-p}}{2^{2m} (2^{-p}) (m!) (\Gamma(-p+1)) (-p+1) \dots (-p+m)}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m!) \Gamma(-p+m+1)} \left(\frac{x}{2}\right)^{2m-p} = J_{-p}(x).$$

So if p is not an integer we have a general solution to Bessel's equation of order p:

$$y(x) = c_1 J_p(x) + c_2 J_{-p}(x); \quad x > 0.$$

To get the correct solution for x < 0 we need to replace x^p with $|x|^p$ in $J_p(x)$ and $J_{-p}(x)$.

If p=n; a nonnegative integer, then

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)\Gamma(n+m+1)} \left(\frac{x}{2}\right)^{2m+n}$$

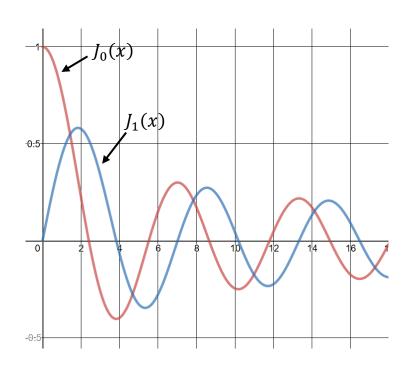
$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)(n+m)!} \left(\frac{x}{2}\right)^{2m+n}$$

So we have:

$$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m!)^2} = 1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 (4^2)} - \frac{x^6}{2^2 (4^2) (6^2)} + \cdots$$

$$J_1(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+1}}{2^{2m+1} (m!) (m+1)!} = \frac{x}{2} - \frac{1}{2!} \left(\frac{x}{2}\right)^3 + \frac{1}{2! (3!)} \left(\frac{x}{2}\right)^5 + \cdots$$

The graph of $J_0(x)$ looks a bit like a damped graph of $\cos x$ and the graph of $J_1(x)$ looks a bit like a damped graph of $\sin x$.



Similar to the relationship between $\cos x$ and $\sin x$,

$$J_0'(x) = -J_1(x).$$

Bessel functions of the second kind

If p is an integer, n, then the solution to

$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

has $y_1(x)$ as a solution, but there is no second Frobenius series. The general solution is:

$$y(x) = c_1 J_n(x) + c_2 Y_n(x)$$

where,

$$Y_n(x) = \frac{2}{\pi} \left(\gamma + \ln(\frac{x}{2}) \right) J_n(x) - \frac{1}{\pi} \sum_{m=0}^{n-1} \frac{2^{n-2m} (n-m-1)!}{m! x^{n-2m}}$$
$$- \frac{1}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^m (H_m + H_{m+n})}{m! (m+n)!} \left(\frac{x}{2} \right)^{n+2m}$$

where
$$\gamma=\lim_{n\to\infty}(\sum_{k=1}^n\frac{1}{k}-\ln n)$$
 (Euler's constant) and $H_m=\sum_{k=1}^m\frac{1}{k}$.

 $Y_n(x)$ is called the Bessel function of the second kind of integral order.

Bessel function Relationships

$$J_p(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(p+m+1)} \left(\frac{x}{2}\right)^{2m+p}$$

If p is a nonnegative integer then:

$$\frac{d}{dx}[x^{p}J_{p}(x)] = \frac{d}{dx}\left(\sum_{m=0}^{\infty} \frac{(-1)^{m}x^{2m+2p}}{2^{2m+p}(m!)(p+m)!}\right)$$

$$= \sum_{m=0}^{\infty} \frac{(2m+2p)(-1)^{m}x^{2m+2p-1}}{2^{2m+p}(m!)(p+m)!}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^{m}x^{2m+2p-1}}{2^{2m+p-1}(m!)(p+m-1)!}$$

$$= x^{p}\sum_{m=0}^{\infty} \frac{(-1)^{m}x^{2m+p-1}}{2^{2m+p-1}(m!)(p+m-1)!}$$

$$= x^{p}J_{p-1}(x)$$

So
$$\frac{d}{dx} \left[x^p J_p(x) \right] = x^p J_{p-1}(x).$$
 Similarly,
$$\frac{d}{dx} \left[x^{-p} J_p(x) \right] = -x^{-p} J_{p+1}(x).$$

Applying the product rule to $\frac{d}{dx}[x^pJ_p(x)]$ and $\frac{d}{dx}[x^{-p}J_p(x)]$ we get:

$$J'_{p}(x) = J_{p-1}(x) - \frac{p}{x}J_{p}(x)$$

$$J'_p(x) = \frac{p}{x} J_p(x) - J_{p+1}(x).$$

Subtracting these equations, we get:

$$0 = J_{p-1}(x) - \frac{2p}{x}J_p(x) + J_{p+1}(x)$$

a recurrence relationship between Bessel functions of the first kind.

Ex. With p=1 in $\frac{d}{dx} \big[x^p J_p(x) \big] = x^p J_{p-1}(x)$, we get:

$$\frac{d}{dx}[xJ_1(x)] = xJ_0(x)$$

$$\int \frac{d}{dx} [x J_1(x)] = \int x J_0(x) \ dx$$

$$xJ_1(x) + C = \int xJ_0(x) dx.$$

Ex. With
$$p=0$$
 in $\frac{d}{dx}\big[x^{-p}J_p(x)\big]=-x^{-p}J_{p+1}(x)$, we get:

$$\frac{d}{dx}[J_0(x)] = -J_1(x)$$

$$\int \frac{d}{dx}[J_0(x)] = \int -J_1(x) dx$$

$$J_0(x) + C = -\int J_1(x) dx$$

$$-J_0(x) + C = \int J_1(x) dx.$$

Ex. Find $\int x^2 J_0(x) \ dx$ and $\int x^3 J_0(x) \ dx$ in terms of Bessel functions and $\int J_0(x) \ dx$.

Integrate by parts and use the previous examples:

$$\int x^2 J_0(x) \ dx = x^2 J_1(x) - \int x J_1(x) \ dx$$
 Let $u=x$ $v=x J_1(x)$ Let $u=x$ $v=-J_0(x)$
$$du=dx \quad dv=x J_0(x) dx \qquad du=dx \quad dv=J_1(x) dx$$

$$= x^2 J_1(x) - [-xJ_0(x) - \int -J_0(x) dx]$$
$$\int x^2 J_0(x) dx = x^2 J_1(x) + xJ_0(x) - \int J_0(x) dx.$$

$$\int x^3 J_0(x) \ dx = x^3 J_1 - \int 2x^2 J_1(x) \ dx$$
 Let $u=x^2$
$$v=x J_1$$
 Let $u=2x^2$
$$v=-J_0(x)$$

$$du=2x \ dx \quad dv=xJ_0 dx$$

$$du=4x \ dx \quad dv=J_1(x) dx$$

$$= x^{3}J_{1} - [-2x^{2}J_{0}(x) - 4 \int -xJ_{0}(x) dx]$$
$$\int x^{3}J_{0}(x) dx = x^{3}J_{1}(x) + 2x^{2}J_{0}(x) - 4xJ_{1}(x) + C.$$