The Gamma Function and Bessel Functions

Bessel’s equation of order p = 0 is:

x2y" + xy' + (x> —p?)y = 0.

Solutions are called Bessel functions of order p.
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y" +§y’ +xx_2p y = 0.
sop(x) =1, p(0)=1; q()=x*—-p? q(0)=-p
Indicial equation:
rr—1)+r—-p?>=0
r’2—p?=0
r = 1p.

If we substitute y = Yoo _o CrnX™ T into x2y"" + xy' + (x%2 — p?)y = 0:

x2¥® _(m+r)(m+r—1)c,x™" 2
+x Ym=o(m + T)mem+r_1 + (xz - pZ) Yim=0 mem+r =0

Yo_om+r)(m+r—1)c,x™" + Y0 _o(m+1r)c,x™"
+ Z‘;‘z:o mem+r+2 _ Z;Olzo pzcmxm+r — 0

Yo olm+r)(m+1—1) + (m+71) — ple,x™
+ 27012=2 Cm—zxm+r =0

Z;ﬁ=0[(m + T)Z - pZ]memH" + Z?ﬁ:z Cm—me+r =



m = 0: (r2 —p3cy =0

S0 Cp can be any number because r? — p2 = 0.

m=1: [(1+7)%2—p?]c; =0
sinceifr = +pthen (1+1)2 —p? #0, = ¢, =0, unlessr = —%.
m=2: [((m +7)% —p?lc,, + Cppepy =0

. = —__‘m-2

m (m+1r)2—p2 "~

Case wherer =p > 0:

(m+p)? —p?=m?+2mp

So using a,, for ¢, in this case:

Am— Am—
m2+2mp mQp+m)

Because a; = 0, all odd a,,,s are also 0.

— . e ao
m=2: “2 7 Taepy)
m = 4: U = T epta T 2@ @p+2)2pie)
—_ . - — a4 = - ao
m = 6: Ae = 6(2p+6) 2(4)(6)(2p+2)(2p+4)(2p+6)
— 4 _ (=1)™May
2M ™ 5(4)(6)--(2m)(2p+2) (2p+4)-(2p+2m)
a _ (-1)™May
2m T 22m(m)l(p+1)(p+2)-(p+m)
(_1)mx2m+p

/1 (x) — o Zm:O 22m(m)!(p+1)...(p+m) '



We saw when p = 0, this is the only Frobenius series solution.

Case wherer = —p < 0

(m —p)* —p? =m* — 2mp = m(m — 2p)

Now using b, for c,,, we get:

by —
b, = ——2=2%—; form > 2.
m m(m-2p)’ —
1
Once again, by can be any constant and b; = 0, unless 7 = -

1
Notice if p is either a positive integer or an odd multiple (= 3) of > then

m — 2p will equal O for some positive integer m. If that happens there will be
no solution form(m — 2p)b,,, + by,_» = 0if b,,_, # 0.

k
Ifp = > k an odd positive integer, then we don’t have a problem because we

can choose b,,, = 0 for all odd m. So if p is not a positive integer, we have:

bm—2
= -2 - >
b m(m-2p) ’ mz2
And we get:
(_1)mx2m—p
x) = by Y= :
y2(x) 0 Zm=0 25 mi(—p+1)(—p+2)...(—p+m)
1
Ifr = — > then by is an arbitrary constant and

1 1
y2(x) = by (x_i) cosx + by (x_i) sinx.
1
Butif r = i, y1(x) = aq (x_E) sinx, thus we can take b; = 0 above.



The series representation of y; (x) and Y, (x) converge for x > 0, since x = 0
is the only singular point of the differential equation.

The gamma function

Def. The gamma function is defined as:

'(x) = foooe_t t*~1dt, x>0.

a) T(1) = ["et dt = Jim (—e™* t=by = 1.

b) '(x + 1) = xI'(x)

Proof:

. b _
[(x+1) = lim [ e tt* dt; integrate by parts:
b—oo 0

letu = t* v=—et

du = xt*1 dv = e~ tdt

= lim [—t*e t|tZ5 + xfob e~ tt*1dt] = xT'(x)

b—oo

X

. -b
Since lim — =0  forany x > 0.
b—ooo €é

So I'(x + 1) = xI'(x). In particular:
r'(2) = 1) = 1!
I'(3) =2I'(2) = 2!
I'(4) =3r(@3) = 3!

= I'(n+ 1) = n! forn = 0 aninteger.



An important special value of the gamma function is:
1 _ © _¢ _1
r (E) = [, e7ft2dt

letu? =t

1

ﬁdt

2udu =dt or 2du=%dt=

F(1)=2foooe"u2du=\/E.

2

The gamma function, F(x), is defined for x > 0. However, we can extend
its definition to all x < 0 such that x is not a negative integer. We can do
this through the relationship:

Fx+1) =x[(x) = TI(x) =D

X

For example, if 0 < x + 1, then I'(x + 1) is defined. We can then

r 1
defineI'(x) = HD) for —1 < x < 0. Now that I'(x) is defined for

—1 < x <0, wecandefinel'(x), for—2 < x < —1 by
M) = F(x;—l)
all x < 0 such that x is not a negative integer.

. Continuing this process we get a definition of I'(x) for

Below is a graph of the function I'(x).
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Bessel functions of the first kind

The solution to x2y"" + xy' + (x? — p?)y = 0 corresponding

tor=p>0is
(_1)mx2m+p
mHp+1D)...(p+m) '

y1(x) = ag Xm=o S2m

1
2PT(p+1)’

Tp+m+D)=p@P+m)p+m-1).p+2)p+DI(p+1)

If we choose ay = p > 0 and use:

which follows from I'(x + 1) = xI'(x) we get:

o (—1)Mx2m+p

y1(x) = Yim=o 22M2PYmD([T(p+1)) (p+1)...(p+m)
oo (—1)Mx2m+p
= Ym=0 22MFP (DL (m+p+1)

oo (—)m x 2m+p
B Zm:o(m!)[‘(m+p+1) (2) '

This is called the Bessel function of the first kind of order p denoted by:

oo (=™ x 2m+p
Jp(%) = Zm=0 (mDI(m+p+1) (2) '



. . . . M — —1 1
Similarly, if p > 0 is not an integer, we choose by = 2 PT(—pt1) in the
Frobenius solution corresponding to r = —p and get:

(_1)mx2m—p
X) = by Y=
3’2( ) 0 Zm—o 22M(m!)(-p+1)...(—p+m)

(_1)mx2m—p

— Zm=0 22m2-P)Y(m)(T'(-p+1))(—p+1)..(—p+m)

. o (_1)m £ 2m-—p .
= Lm=0 (M) (-p+m+1) (2) = J-p(x).

So if p is not an integer we have a general solution to Bessel’s equation of
order p:
y(x) = Cl]p(x) + C2]—p(x); x > 0.

To get the correct solution for x < 0 we need to replace xP with |x|P in

]p(x) and ]—p(x)-

If p = n; a nonnegative integer, then

(—1)™m (x)2m+n

]Tl(x) = Zm=0 (mHI(n+m+1) 2

(-1)™ (x)2m+n

(%) = Lm=0 Gy trrmt \2



So we have:

_ v DMk x? x* x©
Jox) = Zm=0 22m(mn2 22 T 22(4%)  22(42)(62%) T

oy _ oMt x o1\ 1 (xS
jl(x) — Zm=0 22m+1(mN(m+1)! 2 B 2! (2) + 2!(3) (2) T

™ LTox)
The graph of J,(x) looks a bit 70
like a damped graph of cos x
' J1(x)
and the graph of J; (x) looks s /’
a bit like a damped graph of
sin x. '
0 1 10 12 14 16

Similar to the relationship between cos x and Sin Xx,

Jo(x) = =J1(x).



Bessel functions of the second kind

If p is an integer, N, then the solution to
x2y" +xy'+ (x? —p?)y =0

has y; (x) as a solution, but there is no second Frobenius series.
The general solution is:

y(x) = cJn(x) + YV (%)

where,
n—1 2"7?M(n-m-1)!

V() =2 (v + ) Ju () — =2k

1y (D)™ (Hm+Hm+n) X ntzm
an:O m!(m+n)! (2)

: 1
where y = lim (3r-, Pl Inn) (Euler’s constant) and
n—->00

1
Hm = ZZL:l; .

Y,,(x) is called the Bessel function of the second kind of integral order.
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Bessel function Relationships

(—1)™m (£)2m+p
m!I'(p+m+1) \2

Jp(X) = Xm=o

If p is a nonnegative integer then:
(_1)mx2m+2p
25MFP 1y (p+m)!

— [xPJp ()] = = (Tgmco

_ ZOO (2m+2p)(_1)mx2m+2p—1
—am=0 2mip(m) (p+m)!

(_1)mx2m+2p—1

= Lm=o 22m+P=1(m!)(p+m—1)!

= xP ZOO (—1)Mx2m+p-1 )
M=0 22m+p=1(m1)(p+m-—1)!

= xp]p—l(x)

So % [xp]p(x)] = xPJ,_1(x).

Similarly, %[x_p]p(x)] = —x"PJp41(x).



. d d _
Applying the product rule to — [xP],(x)] and — [x7PJ,(x)] we get:

Jp(0) = Jpo1 () = 2 Jp (%)
Jp(0) =2 Jp(x) = Jp1 (6).

Subtracting these equations, we get:

0=/,1(x)— 27p]p(x) + Jp+1 (%)

a recurrence relationship between Bessel functions of the first kind.

Ex. Withp = 1in % [xp]p )] = xPJ,_1(x), we get:
= [x/1 ()] = 2o (x)

[ 2 ()] = [ xJo(x) dx

xJ1(0) + € = [ xJo(x) dx.

11
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Ex. Withp = 0in % [x_p]p (x)] = —x"PJp41(x), we get:
d
Ix Vo ()] = =1 (%)

[==Uo@)] = [ —J1(x) dx

JoG) +C=—[]1(x) dx

—Jo(x) + C = [ J;(x) dx.

Ex. Find [ x2Jy(x) dx and [ x3],(x) dx in terms of Bessel functions and

f]o(x) dx.

Integrate by parts and use the previous examples:
fleo(x) dx = x*J;(x) — fx]1(x) dx
letu = x v=uxJ(x) letu = x v=—J(x)

du=dx dv=xJy(x)dx du =dx dv=];(x)dx

= x%J;(x) — [—xJo(x) — f —Jo(x) dx]
S x%Jo(x) dx = x*J;(x) + xJo(x) — [ Jo(x) dx.
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| %3Jo(x) dx = x3]; — [ 2x%];(x) dx
Let u = x?2 v=2x] Let u = 2x?2 v =—Jo(x)

du =2xdx dv = xJ,dx du =4xdx dv=];(x)dx

= x3]1 - [_szfo(x) - 4f —xJo(x) dx]
[ x3Jo(x) dx = x3J;(x) + 2x%Jo(x) — 4x]; (x) + C.



