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Series Solutions Near Regular Singular Points:  𝑟1 − 𝑟2 is an integer 

 

Consider the differential equation: 

𝑦′′ +
𝑝(𝑥)

𝑥
𝑦′ +

𝑞(𝑥)

𝑥2 𝑦 = 0  

where 𝑝(𝑥) and 𝑞(𝑥) are analytic at 𝑥 = 0 and thus 𝑥 = 0 is a regular singular 

point. 

 

We had a theorem that said there are two linearly independent solutions through 

a Frobenius series if 𝑟1 ≠ 𝑟2 and 𝑟1 − 𝑟2 is not a positive integer ( 𝑟1 ≥ 𝑟2 are 

the real roots of the indicial equation:  𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0). 

 

When 𝑟1 = 𝑟2 there can only be one Frobenius series solution.  

 

When 𝑟1 − 𝑟2 = 𝑁, a positive integer, then there may (or may not) be two 

linearly independent Frobenius series solutions. 

 

The Nonlogarithmic Case with 𝑟1 = 𝑟2 + 𝑁 

Ex.   Solve 𝑥𝑦′′ + (3 − 𝑥)𝑦′ − 𝑦 = 0. 

 

 Dividing by 𝑥 we get: 

                    𝑦′′ +
3−𝑥

𝑥
 𝑦′ −

𝑥

𝑥2 𝑦 = 0  

 So      𝑝(𝑥) = 3 − 𝑥 and 𝑝(0) = 3 

𝑞(𝑥) = −𝑥 and 𝑞(0) = 0. 
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 The indicial equation becomes: 

                                         𝑟(𝑟 − 1) + 3𝑟 = 0 

𝑟2 + 2𝑟 = 0 

𝑟(𝑟 + 2) = 0 

𝑟 = 0, −2. 

 So 𝑟1 = 0, 𝑟2 = −2 and 𝑟1 − 𝑟2 = 2, a positive integer. 

 

 Substituting 𝑦 = ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0  into the differential equation: 

𝑥𝑦′′ + (3 − 𝑥)𝑦′ − 𝑦 = 0 

 

            𝑥 ∑ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟−2∞
𝑛=0                                               

                                 +(3 − 𝑥) ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0 − ∑ 𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 0  

 

∑ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0 + 3 ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞

𝑛=0                        

                                              −𝑥 ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0 − ∑ 𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 0  

   

∑ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0 + ∑ 3(𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞

𝑛=0                      

                                                     − ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 − ∑ 𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 0  

 

     ∑ [(𝑛 + 𝑟)(𝑛 + 𝑟 − 1) + 3(𝑛 + 𝑟)]𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0                                            

                                                                          − ∑ (𝑛 + 𝑟 + 1)𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 = 0     

 

∑ [(𝑛 + 𝑟)2 + 2(𝑛 + 𝑟)]𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0 − ∑ (𝑛 + 𝑟)𝑐𝑛−1𝑥𝑛+𝑟−1∞

𝑛=1 = 0.  
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The term corresponding to 𝑛 = 0 is the indicial equation: 

𝑛 = 0 ∶     (𝑟2 + 2𝑟)𝑐0 = 0 or 𝑟(𝑟 + 2)𝑐0 = 0. 

  Since 𝑟(𝑟 + 2) = 0 for both roots 𝑟1 and 𝑟2, 𝑐0 is an arbitrary constant. 

 

For 𝑛 ≥ 1 ∶   [(𝑛 + 𝑟)2 + 2(𝑛 + 𝑟)]𝑐𝑛 − (𝑛 + 𝑟)𝑐𝑛−1 = 0 

                             (𝑛 + 𝑟)(𝑛 + 𝑟 + 2)𝑐𝑛 − (𝑛 + 𝑟)𝑐𝑛−1 = 0 

 

In this case, start with the smaller root, 𝑟2 = −2. 

(𝑛 − 2)(𝑛)𝑐𝑛 − (𝑛 − 2)𝑐𝑛−1 = 0. 

If 𝑛 ≠ 2, we can solve for 𝑐𝑛: 

𝑐𝑛 =
𝑐𝑛−1

𝑛
 .  

So we get: 

                              𝑛 = 1                                              𝑐1 = 𝑐0 

When we have 𝑟1 = 𝑟2 + 𝑁, it will always be the coefficient 𝑐𝑁 that requires 

special consideration. In this example 𝑁 = 2. 

 

If 𝑛 = 2, then (𝑛 − 2)(𝑛)𝑐𝑛 − (𝑛 − 2)𝑐𝑛−1 = 0;       0𝑐2 − 0𝑐1 = 0. 

We know that   𝑐1 = 𝑐0 ≠ 0, but 𝑐2 can be anything. 

So 𝑐2 is a second arbitrary constant along with 𝑐0. 
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Continuing to use the recursion formula: 𝑐𝑛 =
𝑐𝑛−1

𝑛
  ;    𝑛 > 2: 

                                   𝑛 = 3                    𝑐3 =
𝑐2

3
  

                                    𝑛 = 4                    𝑐4 =
𝑐3

4
=

𝑐2

3(4)
  

                                    𝑛 = 5                     𝑐5 =
𝑐4

5
=

𝑐2

3(4)(5)
=

2𝑐2

5!
 . 

                                          𝑐𝑛 =
2𝑐2

𝑛!
 ;       𝑛 > 2. 

 

So 𝑦 = 𝑥𝑟 ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = 𝑥−2 ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0  

      𝑦 = 𝑐0𝑥−2(1 + 𝑥) + 𝑐2𝑥−2 (𝑥2 + ∑
2𝑥𝑛

𝑛!
∞
𝑛=3 )    

           = 𝑐0
(1+𝑥)

𝑥2 + 𝑐2(1 + ∑
2𝑥𝑛

(𝑛+2)!
∞
𝑛=1 ).      

 

So we have two linearly independent solutions: 

                               𝑦1(𝑥) = 𝑥−2(1 + 𝑥)   

                                𝑦2(𝑥) = 1 +
2

3!
𝑥 +

2

4!
𝑥2 +

2

5!
𝑥3 + ⋯ +

2

(𝑛+2)!
𝑥𝑛 + ⋯ 

                                 𝑦2(𝑥) = 1 + ∑
2𝑥𝑛

(𝑛+2)!
∞
𝑛=1    

                                  

 

Notice that we haven’t found the Frobenius solution corresponding to the larger 

root 𝑟1 = 0.  However, if we did solve for the coefficients corresponding to    

𝑟1 = 0 we would find the series 𝑦2(𝑥) above. 
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Now let’s see an example where 𝑟1 − 𝑟2 =positive integer, but we don’t get two 

linearly independent Frobenius series as solutions. 

 

Ex.  Consider 𝑥2𝑦′′ − 𝑥𝑦′ + (𝑥2 − 3)𝑦 = 0. 

 

 Dividing by 𝑥2 we get: 

𝑦′′ −
1

𝑥
𝑦′ +

𝑥2−3

𝑥2 𝑦 = 0      

So      𝑝(𝑥) = −1 and 𝑝(0) = −1 

𝑞(𝑥) = 𝑥2 − 3 and 𝑞(0) = −3. 

The indicial equation becomes: 

𝑟(𝑟 − 1) − 𝑟 − 3 = 0 

        𝑟2 − 2𝑟 − 3 = 0 

                                                 (𝑟 + 1)(𝑟 − 3) = 0 

𝑟 = −1, 3 

So 𝑟1 − 𝑟2 = 3 − (−1) = 4, a positive integer. 

Substituting 𝑦 = ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0  into the differential equation: 

𝑥2𝑦′′ − 𝑥𝑦′ + (𝑥2 − 3)𝑦 = 0 

 

𝑥2 ∑ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−2∞
𝑛=0 − 𝑥 ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞

𝑛=0                     

                                                                               +(𝑥2 − 3) ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 = 0 

 

∑ (𝑛 + 𝑟 − 1)(𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 − ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0                               

                                                            + ∑ 𝑐𝑛𝑥𝑛+𝑟+2∞
𝑛=0 − ∑ 3𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 0   
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∑ [(𝑛 + 𝑟 − 1)(𝑛 + 𝑟) − (𝑛 + 𝑟) − 3]𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 + ∑ 𝑐𝑛𝑥𝑛+𝑟+2∞

𝑛=0 = 0  

 

∑ [(𝑛 + 𝑟 − 1)(𝑛 + 𝑟) − (𝑛 + 𝑟) − 3]𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 + ∑ 𝑐𝑛−2𝑥𝑛+𝑟∞

𝑛=2 = 0  

 

                ∑ [(𝑛 + 𝑟)2 − 2(𝑛 + 𝑟) − 3]𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 + ∑ 𝑐𝑛−2𝑥𝑛+𝑟∞

𝑛=2 = 0.  

 

When 𝑛 = 0 we get the indicial equation: [(𝑟 − 1)(𝑟) − 𝑟 − 3]𝑐0 = 0. 

So 𝑐0 can be any number.   

 

If 𝑛 = 1 ∶  [(1 + 𝑟)2 − 2(1 + 𝑟) − 3]𝑐1 = 0 

Since (1 + 𝑟)2 − 2(1 + 𝑟) − 3 ≠ 0 for 𝑟 = −1, 3  ;    ⟹  𝑐1 = 0.  

 

For 𝑛 ≥ 2 ∶    [(𝑛 + 𝑟)2 − 2(𝑛 + 𝑟) − 3]𝑐𝑛 + 𝑐𝑛−2 = 0. 

 

Again, start with the smaller root 𝑟 = −1 

[(𝑛 + 𝑟)2 − 2(𝑛 + 𝑟) − 3]𝑐𝑛 + 𝑐𝑛−2 = 0 

                                     𝑛(𝑛 − 4)𝑐𝑛 + 𝑐𝑛−2 = 0 ;   

                ⟹          𝑐𝑛 = −
1

𝑛(𝑛−4)
𝑐𝑛−2 ;   𝑛 ≥ 2, 𝑛 ≠ 4. 

Since 𝑐1 = 0, all odd 𝑐𝑛s are 0. 

𝑛 = 2                 𝑐2 =
𝑐0

4
  

If we have 𝑛 = 4, then we have:  4(4 − 4)𝑐4 + 𝑐2 = 0.  But 𝑐2 =
𝑐0

4
≠ 0 

since 𝑐0 ≠ 0.  So there is no way to choose 𝑐4 to satisfy this equation, thus there 

is no Frobenius series solution corresponding to the smaller root 𝑟2 = −1. 
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Now let’s find the Frobenius series corresponding to the root 𝑟1 = 3. 

We substitute 𝑟 = 3 into:  

[(𝑛 + 𝑟)2 − 2(𝑛 + 𝑟) − 3]𝑐𝑛 + 𝑐𝑛−2 = 0 

[(𝑛 + 3)2 − 2(𝑛 + 3) − 3]𝑐𝑛 + 𝑐𝑛−2 = 0 

                                  (𝑛2 + 4𝑛)𝑐𝑛 + 𝑐𝑛−2 = 0 ;  

                      ⟹         𝑐𝑛 = −
1

𝑛(𝑛+4)
𝑐𝑛−2 ;   𝑛 ≥ 2:     (odd 𝑐𝑛s are still 0)   

 

                         𝑛 = 2                                    𝑐2 = −
𝑐0

2(6)
            

                         𝑛 = 4                    𝑐4 = −
𝑐2

4(8)
=

𝑐0

2(4)(6)(8)
  

                         𝑛 = 6                   𝑐6 = −
𝑐4

6(10)
= −

𝑐0

2(4)(6)(6)(8)(10)
  

                               ⟹      𝑐2𝑛 =
(−1)𝑛𝑐0

2(4)(6)⋯(2𝑛)(6)(8)(10)⋯(2𝑛+4)
 .    

 

    2(4)(6) ⋯ (2𝑛) = 2𝑛(1(2)(3) ⋯ (𝑛)) = 2𝑛(𝑛!)  

(6)(8)(10) ⋯ (2𝑛 + 4) = 2𝑛(3(4)(5) ⋯ (𝑛 + 2)) =
2𝑛(𝑛+2)!

2
  

(2(4)(6) ⋯ (2𝑛))((6)(8)(10) ⋯ (2𝑛 + 4)) = 22𝑛−1(𝑛!)(𝑛 + 2)!  

                               ⟹       𝑐2𝑛 =
(−1)𝑛

22𝑛−1(𝑛!)(𝑛+2)!
𝑐0     

 

 So the Frobenius series solution is: 

𝑦1(𝑥) = 𝑐0𝑥3 (1 + ∑
(−1)𝑛𝑥2𝑛

22𝑛−1(𝑛!)(𝑛+2)!

∞
𝑛=1 ).    
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When only one Frobenius solution exists, we need a way to find a second linearly 

independent solution. We do this through the method of reduction of order. We 

will use the fact that we know one solution, 𝑦1(𝑥), to reduce a second order 

differential equation into a first order differential equation. 

 

Suppose we know 𝑦1(𝑥) is a solution to 𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0. 

Let’s say 𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥). If we can find 𝑣(𝑥) then we know 𝑦2(𝑥). 

If 𝑦2(𝑥) is also a solution to 𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0. Then, 

 

       𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥) 

       𝑦2
′ (𝑥) = 𝑣(𝑥)𝑦1

′ (𝑥) + 𝑣′(𝑥)𝑦1(𝑥) 

𝑦2
′′(𝑥) = 𝑣(𝑥)𝑦1

′′(𝑥) + 𝑣′(𝑥)𝑦1
′ (𝑥) + 𝑣′(𝑥)𝑦1

′ (𝑥) + 𝑣′′(𝑥)𝑦1(𝑥) 

        𝑦2
′′(𝑥) = 𝑣(𝑥)𝑦1

′′(𝑥) + 2𝑣′(𝑥)𝑦1
′ (𝑥) + 𝑣′′(𝑥)𝑦1(𝑥). 

 

Substituting into 𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0: 

(𝑣𝑦1
′′ + 2𝑣′𝑦1

′ + 𝑣′′𝑦1) + 𝑃(𝑥)(𝑣𝑦1
′ + 𝑣′𝑦1) + 𝑄(𝑥)𝑣𝑦1 = 0 

Regrouping terms, we get: 

𝑣(𝑦1
′′ + 𝑃(𝑥)𝑦1

′ + 𝑄(𝑥)𝑦1) + 𝑣′′𝑦1 + 2𝑣′𝑦1
′ + 𝑃(𝑥)𝑣′𝑦1 = 0. 

 

But 𝑦1 is a solution so 𝑦1
′′ + 𝑃(𝑥)𝑦1

′ + 𝑄(𝑥)𝑦1 = 0, so we can write 

                     𝑣′′𝑦1 + 2𝑣′𝑦1
′ + 𝑃(𝑥)𝑣′𝑦1 = 0  

                      𝑣′′𝑦1 + (2𝑦1
′ + 𝑃(𝑥)𝑦1)𝑣′ = 0. 
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Now let 𝑢 = 𝑣′ so the equation becomes: 

                            𝑢′𝑦1 + (2𝑦1
′ + 𝑃(𝑥)𝑦1)𝑢 = 0  

                                    𝑢′ + (
2𝑦1

′

𝑦1
+ 𝑃(𝑥)) 𝑢 = 0.   

 

Thus an integrating factor for this equation is: 

𝜌 = 𝑒
∫(

2𝑦1
′

𝑦1
+𝑃(𝑥))𝑑𝑥

= 𝑒(2 ln|𝑦1|+∫ 𝑃(𝑥)𝑑𝑥) = 𝑦1
2𝑒∫ 𝑃(𝑥)𝑑𝑥 .   

 

So,  𝑦1
2𝑒∫ 𝑃(𝑥)𝑑𝑥𝑢′ + (2𝑦1

′ 𝑦1𝑒∫ 𝑃(𝑥)𝑑𝑥 + 𝑦1
2𝑃(𝑥)𝑒∫ 𝑃(𝑥)𝑑𝑥)𝑢 = 0  

(𝑢𝑦1
2𝑒∫ 𝑃(𝑥)𝑑𝑥)

′
= 0  

𝑢𝑦1
2𝑒∫ 𝑃(𝑥)𝑑𝑥 = 𝐶 

𝑢 =
𝐶

𝑦1
2 𝑒− ∫ 𝑃(𝑥)𝑑𝑥.  

 

           𝑢 = 𝑣′    ⟹                𝑣′ =
𝐶

𝑦1
2 𝑒− ∫ 𝑃(𝑥)𝑑𝑥     

                                                 𝑣 = 𝐶 ∫
𝑒− ∫ 𝑃(𝑥)𝑑𝑥

𝑦1
2  𝑑𝑥   

 

          𝑣 =
𝑦2

𝑦1
    ⟹                  

𝑦2

𝑦1
= 𝐶 ∫

𝑒− ∫ 𝑃(𝑥)𝑑𝑥

𝑦1
2  𝑑𝑥 

 

          𝑦2 = 𝐶𝑦1 ∫
𝑒− ∫ 𝑃(𝑥)𝑑𝑥

𝑦1
2 𝑑𝑥.   

This reduction of order approach is used to find the second non-Frobenius 

solution described in the next theorem (The Logarithmic Case). 
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The Logarithmic Case 

We now investigate the form of the second solution to: 

𝑦′′ +
𝑝(𝑥)

𝑥
𝑦′ +

𝑞(𝑥)

𝑥2
𝑦 = 0 

under the assumption 𝑟1 = 𝑟2 + 𝑁, 𝑁 is a positive integer. We assume we have 

already found the Frobenius series solution: 

𝑦1(𝑥) = 𝑥𝑟1 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ;   𝑎0 ≠ 0 for 𝑥 > 0.  

 

Theorem: Suppose 𝑥 = 0 is a regular singular point of 

𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0. 

 Let 𝜌 > 0 be the minimum of the radii of convergence of 

𝑝(𝑥) = ∑ 𝑝𝑛𝑥𝑛∞
𝑛=0  and 𝑞(𝑥) = ∑ 𝑞𝑛𝑥𝑛∞

𝑛=0 . 

 Let 𝑟1, 𝑟2 be the real roots of the indicial equation 

𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0 ;  𝑟1 ≥ 𝑟2 

a) If 𝑟1 = 𝑟2 then the two solutions 𝑦1 and 𝑦2 are of the form  

 

                       𝑦1 = 𝑥𝑟1 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ;      𝑎0 ≠ 0  

   𝑦2 = (𝑦1(𝑥)) ln 𝑥 + 𝑥(𝑟1+1) ∑ 𝑏𝑛𝑥𝑛∞
𝑛=0   

 

b) If 𝑟1 − 𝑟2 = 𝑁, a positive integer, then   

 

               𝑦1 = 𝑥𝑟1 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ;      𝑎0 ≠ 0  

𝑦2 = 𝐶(𝑦1(𝑥)) ln 𝑥 + 𝑥𝑟2 ∑ 𝑏𝑛𝑥𝑛∞
𝑛=0 ;   𝑏0 ≠ 0.  

 

 

 

Note: 𝐶 could be 0, in which case there are two Frobenius solutions. 
The radii of convergence of the power series in this theorem are at least 

𝜌. The coefficients can be determined by direct substitution.   
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Ex.    Derive the second solution of Bessel’s equation of order zero 

𝑥2𝑦′′ + 𝑥𝑦′ + 𝑥2𝑦 = 0. 

 

 Recall 𝑟1 = 𝑟2 = 0 for this equation and so we can write: 

𝑦1(𝑥) = 𝐽0(𝑥) = ∑
(−1)𝑛𝑥2𝑛

22𝑛
(𝑛!)2

∞
𝑛=0  .    

 Since 𝑟1 = 𝑟2,  

𝑦2 = 𝑦1(ln 𝑥) + 𝑥(𝑟1+1) ∑ 𝑏𝑛𝑥𝑛∞
𝑛=0   

𝑦2 = 𝑦1(ln 𝑥) + ∑ 𝑏𝑛𝑥𝑛+1∞
𝑛=0 = 𝑦1 ln 𝑥 + ∑ 𝑐𝑛𝑥𝑛∞

𝑛=1 ;      since 𝑟1 = 0.  

𝑦2
′ = 𝑦1 (

1

𝑥
) + 𝑦1

′ (ln 𝑥) + ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1   

𝑦2
′′ = 𝑦1 (−

1

𝑥2) + 𝑦1
′ (

1

𝑥
) + 𝑦1

′′(ln 𝑥) + 𝑦1
′ (

1

𝑥
) + ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞

𝑛=2    

       = 𝑦1
′′(ln 𝑥) +

2

𝑥
𝑦1

′ −
𝑦1

𝑥2 + ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2  .  

 

 Substituting into 𝑥2𝑦′′ + 𝑥𝑦′ + 𝑥2𝑦 = 0: 

𝑥2[𝑦1 (−
1

𝑥2) + 𝑦1
′ (

2

𝑥
) + 𝑦1

′′(ln 𝑥) + ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2 ] +

𝑥[𝑦1 (
1

𝑥
) + 𝑦1

′ (ln 𝑥) + ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 ] + 𝑥2(𝑦1 ln 𝑥 + ∑ 𝑐𝑛𝑥𝑛∞

𝑛=1 ) = 0.   

 

           collecting similar terms we get: 

(𝑥2𝑦1
′′ + 𝑥𝑦1

′ + 𝑥2𝑦1) ln 𝑥 + 2𝑥𝑦1
′ + ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛∞

𝑛=2                            

                                                                   + ∑ 𝑛𝑐𝑛𝑥𝑛∞
𝑛=1 + ∑ 𝑐𝑛𝑥𝑛+2∞

𝑛=1 = 0.  

 

But 𝑦1 is a solution to the equation: 𝑥2𝑦1
′′ + 𝑥𝑦1

′ + 𝑥2𝑦1 = 0, so we get  

2𝑥𝑦1
′ + ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛∞

𝑛=2 + ∑ 𝑛𝑐𝑛𝑥𝑛∞
𝑛=1 + ∑ 𝑐𝑛𝑥𝑛+2∞

𝑛=1 = 0.  
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𝑦1 = ∑
(−1)𝑛𝑥2𝑛

22𝑛
(𝑛!)2

∞
𝑛=0     

                                     𝑦1
′ = ∑

(−1)𝑛2𝑛𝑥2𝑛−1

22𝑛
(𝑛!)2

∞
𝑛=1     

                                2𝑥𝑦1
′ = 2 ∑

(−1)𝑛2𝑛𝑥2𝑛

22𝑛(𝑛!)2
∞
𝑛=1       

 

2 ∑
(−1)𝑛2𝑛𝑥2𝑛

22𝑛
(𝑛!)2

∞
𝑛=1 + ∑ (𝑛(𝑛 − 1) + 𝑛)𝑐𝑛𝑥𝑛∞

𝑛=2 + 𝑐1𝑥 + ∑ 𝑐𝑛−2𝑥𝑛 = 0∞
𝑛=3   

 

2 ∑
(−1)𝑛2𝑛𝑥2𝑛

22𝑛(𝑛!)2

∞

𝑛=1

+ 𝑐1𝑥 + 22𝑐2𝑥2 + ∑(𝑛2𝑐𝑛 + 𝑐𝑛−2)𝑥𝑛 = 0.     

∞

𝑛=3

(∗) 

 

The only term involving 𝑥 in this equation is 𝑐1𝑥 so 𝑐1 = 0. 

 

All odd powers come from:     ∑ (𝑛2𝑐𝑛 + 𝑐𝑛−2)𝑥𝑛∞
𝑛=3 ,  

                                               so 𝑛2𝑐𝑛 + 𝑐𝑛−2 = 0,  𝑛 odd. 

       𝑐𝑛 = −
𝑐𝑛−2

𝑛2     for 𝑛 odd. 

But since 𝑐1 = 0, all the odd coefficients are 0. 
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        From equation (∗) we can calculate the even coefficients,  𝑐2𝑛. 

 

𝑛 = 1:                                 2 (
(−1)(2)

4
) + 22𝑐2 = 0  

                               𝑐2 =
4

4
(

1

22) =
1

4
  

 

𝑛 ≥ 2:           
2(−1)𝑛2𝑛

22𝑛(𝑛!)2 + (2𝑛)2𝑐2𝑛 + 𝑐2𝑛−2 = 0  

                              4𝑛2𝑐2𝑛 + 𝑐2𝑛−2 = −
2(−1)𝑛2𝑛

22𝑛(𝑛!)2   

                               𝑐2𝑛 =
1

4𝑛2 [−𝑐2𝑛−2 +
2(−1)𝑛+12𝑛

22𝑛(𝑛!)2
]   

 

  𝑛 = 2:                                  𝑐4 =
1

4(2)2 [−𝑐2 −
2

4(4)
]   

                                                    𝑐4 =
1

16
[−

1

4
−

1

8
] = −

3

128
    

 

      𝑛 = 3:                                  𝑐6 =
1

4(3)2 [−𝑐4 +
3

24(3!)2]  

                                                              𝑐6 =
1

36
[

3

128
+

3

16(36)
] =

11

13824
 .  

 

So we get: 

𝑦2(𝑥) = (𝐽0(𝑥)) ln 𝑥 +
𝑥2

4
−

3

128
𝑥4 +

11

13824
𝑥6 + ⋯.  

 

 


