Series Solutions Near Regular Singular Points: r; — 5, is an integer

Consider the differential equation:

yn +%y'+q(x)y= 0

x2

where p(x) and q(x) are analyticat x = 0 and thus x = 0 is a regular singular
point.

We had a theorem that said there are two linearly independent solutions through
a Frobenius series if r; # 1, and 17 — 77, is not a positive integer (14, = 15 are
the real roots of the indicial equation: (r — 1) + por + qo = 0).

When 11 = 15, there can only be one Frobenius series solution.

When 1y — 1, = N, a positive integer, then there may (or may not) be two
linearly independent Frobenius series solutions.

The Nonlogarithmic Case withry, =, + N

Ex. Solvexy”" + (3 —x)y' —y =0.

Dividing by X we get:
17} 3—x / X _
oAy mey =
So p(x)=3—xandp(0) =3
q(x) = —x and q(0) = 0.



The indicial equation becomes:
rr—1)+4+3r=20
rée+2r=0
r(r+2)=0
r=0,-2.

Sory =0, r, = —2andr; — 1, = 2, a positive integer.

Substituting y = Yo €, X™ 7 into the differential equation:

xy"+@B-x)y'—y=0

X Yoo+ 1) (n+ 71— 1), x™7 2
+(3 — x) Xpoo(m + M)y x™ T = ¥ g cpx™T =

YoM+ 1) (n+1—Depyx™ 1+ 330 o(n+ r)ex™!
—x Y=o + 1)y x™ T = 30 cpx™T =0

Yo+ 1)+ 71— Depx™ 1 + 30 03(n + 1)y x™ T
— Y=o+ 1)epx™T = X2 o cpx™T =10

YO [+ r)(n+71—1)+ 30+ r)]cyx™tr 1
— Yo+ 1+ Depx™ 7 =

Yo ol +r)2+ 2+ r)]c,x™TT =32 (n+1r)c,_x™T = 0.



The term corresponding to n = 0 is the indicial equation:
n=0: @?+2r)cg=0o0rr(r+2)c, =0.

Since (7 + 2) = 0 for both roots 77 and 15, Cy is an arbitrary constant.

Forn>1: [(n+r)?+2(n+7)]c,—(n+1)cy,_; =0
nm+r)(in+r+2), —(n+1r)c,_; =0

In this case, start with the smaller root, 1, = —2.
(n—2)(n)c, —(n— 2)c,,, = 0.

If n # 2, we can solve for ¢, :

So we get:
n=1 1 = Co

When we have 71 = 1, + N, it will always be the coefficient ¢ that requires

special consideration. In this example N = 2.

Ifn=2,then(n—-2)(n)c,—(n—2)c,_.;=0; 0c, —0cy =0,
We know that ¢; = ¢y # 0, but ¢, can be anything.

So ¢, is a second arbitrary constant along with .



N . Cn—1
Continuing to use the recursion formula: ¢,;, =

= > 2
n
C
n=23 €3 ==
C C
n=4 €, == =%
4 3(4)
Ca Co 2¢y
n=>5 Cc = — = = :
57 5 T 34)5) s
2C2
anw; n> 2.

Soy =x" 3 ey x™ = x"2 Y0 cpx™

n!

y = cCox 2(1 4+ x) + c,x~2 (x2 + 3 5 2x )

_ . 4+ w = 2xM
= ozt (1 + Xnz1 7))

So we have two linearly independent solutions:

y1(x) = x72(1+x)

— 242240234 . 2 ...
yz(x)—1+3!x+4!x +5'x + +(n+2)!x +

o  2x"
Y2 (X) =1 + 2n=1 (n+2)!

Notice that we haven’t found the Frobenius solution corresponding to the larger

root 77 = 0. However, if we did solve for the coefficients corresponding to
r; = 0 we would find the series y, (x) above.



Now let’s see an example where 11 — 1, =positive integer, but we don’t get two
linearly independent Frobenius series as solutions.

Ex. Consider x2y"" — xy' + (x> — 3)y = 0.

Dividing by x? we get:

x2—3

1 1 ’ —
y =y +—7y=0
So p(x)=-1andp(0) =-1

q(x) = x* —3and q(0) = 3.

The indicial equation becomes:

rr—1)—r—-3=0

r’2—2r—=3=0
r+D@r-3)=0
r=-1,3

Sor; — 1, =3 — (—1) = 4, apositive integer.

n+r

Substituting ¥ = X —o €, X" into the differential equation:

x?y" —xy'+ (x*=3)y=0

x2¥e m+r—1DMm+1r)c,x™" 2 —x 32 (n+ 1), x"tr1
Hx — 3) By e0x™ =

Yo om+r—1D)Mm+r)c,x™" = Y7 (n+ r)c,x™"
+ Z;?:o Cnxn+r+2 _ Z;?:O 3cnxn+r — 0



Yo on+tr—Dm+r)—(m+71)—3]c,x™" + Xy x™T2 =0
Ymeoln+r—1)(n+r)—(n+r) — 3]Cnxn+7” +Y, Cn_zxn+r -0
Yo o[(n+ 1) =2+ 1) = 3]c, x™T + X, cppx™T = 0.

When n = 0 we get the indicial equation: [(r — 1)(r) — r — 3]cy = O.

So €y can be any number.

fn=1: [1+7)2=-2(1+7)—3]c; =0
Since(1+71)2—-2(1+7r)—3#0forr=-1,3; = ¢; =0.

Forn>2: [(m+r)2=2(n+71)-3]c, +c,_, =0.

Again, start with the smaller root 7 = —1
[(m+7)2—=2(n+71)—3]c, + ¢, =0

nn—4)c, +c,_, =0;
1

ﬁ _ —_——
Cn n(n—4)

Chn; N =2, n+4.
Since ¢; = 0, all odd ¢,s are 0.

n=2 C2 =7

If we have n = 4, then we have: 4(4 —4)c, + ¢, = 0. Butc, = %0 + 0

since ¢y # 0. So there is no way to choose ¢, to satisfy this equation, thus there

is no Frobenius series solution corresponding to the smaller root 7, = —1.



Now let’s find the Frobenius series corresponding to the root 7; = 3.

We substitute 7 = 3 into:
[(m+7)2—=2n+71)—3]c, + ¢, =0
[(m+3)?2-2n+3)—3]c,+¢c,_, =0

(n®>+4n)c, + ¢, =0;
1

= Cn = ~ g Cn-2 T > 2: (odd c,s are still 0)
C
n=2 c, = _TZ)
_ _ & _ Co
n=4 “4= T T z@eeE)
— — __C _ _ Co
n=6 ‘6= 510 z@(e)6))10)
— (=D"co

“2n = 2@(6)-@m (6)(8)(10)~(2n+4)

2(4)(6) - (2n) = 2™(1(2)(3) -+ (n)) = 2" (n)
(6)(8)(10) -+ (2n + 4) = 2™(3(4)(5) -+ (n + 2)) = L+

2
(2(4)(6) -+ (2n))((6)(8)(10) - 2n + 4)) = 22" 1 (nD)(n + 2)!
_ (—1)"
= fm= 2271 g2yl O

So the Frobenius series solution is:

. 3 - (_1)nx2n
y1(x) = cox (1 + Yn=1 22n—1(n!)(n+2)!>'



When only one Frobenius solution exists, we need a way to find a second linearly
independent solution. We do this through the method of reduction of order. We

will use the fact that we know one solution, y; (X), to reduce a second order
differential equation into a first order differential equation.

Suppose we know y; (x) is a solutionto "' + P(x)y' + Q(x)y = 0.
Let’s say ¥, (x) = v(x)y;(x). If we can find v(x) then we know y, (X).

If y,(x) is also a solutionto y"' + P(x)y’ + Q(x)y = 0. Then,

y2(x) = v(x)y;(x)

y2(x) = v(x)y1(x) + v' () y, (%)

y7 (x) = v(x)y; (x) + v (x)y1(x) + v' ()y1(x) + v )y, (%)
y7 () = v(x)yi' (x) + 2v" () y1 (x) + v" () y1 ().

Substituting into y'' + P(x)y' + Q(x)y = 0:
(vyy +2v'y; +v"y1) + P(x)(wy; +v'y1) + Q(x)vy, = 0
Regrouping terms, we get:

v(y; + P(x)y1 + Q(x)y) + vy, +2v'y; + P(x)v'y, = 0.

But Y, is a solution so y;' + P(x)y; + Q(x)y; = 0, so we can write
v'y, +2v'y; + P(x)v'y; =0
v"y; + 2y; + Py v’ = 0.



Now let u = v so the equation becomes:

u'y; + (2y1 + P(x)y)u =0

u' + (ﬁ+ P(x))u = 0.
B4 1

Thus an integrating factor for this equation is:

b= ef<y1 (x) |dx _ e(zln|y1|+fP(x)dx) — ylzefp(x)dx_
So, ylzefP(x)dxul + (ZyiylefP(x)dx + ylzp(x)efP(x)dx)u —0
(uyZel POI) = g

uylzefP(x)dx —C

u = %e—fP(x)dx'
V1
c _
u=7v = v = S e~ JP@)dx
V1
e~ J P(x)dx
v=C[|———dx
V1
— [ P(x)dx
e
v=2 — 2 [ — dx
341 41 Y1
- [ P(x)dx
e
y2 = Cy [ ——dx.

This reduction of order approach is used to find the second non-Frobenius
solution described in the next theorem (The Logarithmic Case).
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The Logarithmic Case

We now investigate the form of the second solution to:

q(x)

xZ

X
y”‘l'pi)y"l' y=0

under the assumption 7y = 1, + N, N is a positive integer. We assume we have
already found the Frobenius series solution:

yi(x) =x" Y pa,x™; ag # 0forx > 0.

Theorem: Suppose X = 0 is a regular singular point of
x%y" + xp(x)y" + q(x)y = 0.
Let p > 0 be the minimum of the radii of convergence of
p(x) = Xp=oPnXx™ and q(X) = Y=o Gnx™.
Let 1, 1, be the real roots of the indicial equation
rr—=1D)+pyr+qo=0; n=n

a) If r; = 1, then the two solutions y; and y, are of the form

y1 =x"1Y> sa,x"; ag#0
Yo = (}’1(95)) Inx + x(1*D) Y=o bnx"

b) If r; — r, = N, a positive integer, then

yi =x"1Y> sa,x"; ag#0
Y, = C(y1 (x)) Inx +x2Y> o b,x™; by # 0.

Note: C could be 0, in which case there are two Frobenius solutions.
The radii of convergence of the power series in this theorem are at least
p. The coefficients can be determined by direct substitution.
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Ex. Derive the second solution of Bessel’s equation of order zero

zy// + xy/ + xzy = 0.

Recall ; = 1, = 0 for this equation and so we can write:

(— 1)nx2n

y1(x) = Jo(x) = Xn=o 22 n2
Since =Ty,

y2 = y1(Inx) + xtDF2_ (b x"

n+1

yo =y1(nx) + Yoo byx =y, Inx+Y7_,cpx™;  sincer; = 0.

vy =1 (3) + ¥i(nx) + Tiy neyx!
Y2 —yl( )+y1( )+y1(lnx)+y1( )+Zn 2n(n — 1cyx™ 2

= y;/'(Inx) + ;y{ =4+ 3x ,nn—1)c,x" %,

X

Substituting into x2y"" + xy’ + x%y = 0:

2y (=) + 1 (3) + y1' (nx) + T, n(n — Degx™ 2] +
x[y1 () + 71 (nx) + Ty nepx™ 1 + x2 (3 Inx + Xy cpx™) = 0.

collecting similar terms we get:
(x%y;" + xy; + x?y) Inx + 2xy; + Yo, n(n — D, x™
+ XY ne,x™ + Y ¢, x™2 = 0.

But ; is a solution to the equation: x2y; + xy; + x%y; = 0, so we get

ny{ + Z%’:z n(n - 1)Cnx" + Z%ozl ncnxn + Z?lo=1 Cnxn+2 = 0.
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00 (_1)nx2n
Y1 = 2n=o 2202
A, (_1)n2nx2n—1
Y1 = Xn=1 227 ()2
r . (— D) 2nx2n
2xy; = 2 Zn=1W

(— D" 2nx2n
22n( |)2

}En 1

2 (—1)"2nx2"
( 223"(11')2 + c1x + 2%¢,x% + Z(nzcn +cp )Xt =0. (%)

n=1 n=3

The only term involving X in this equation is ¢c; X so ¢; = 0.

All odd powers come from:  Yo_s(n%c, + ¢,_5)x™,

son?c, + c,_, = 0, n odd.

Cn—2

2 formodd.

Cn = —

But since ¢; = 0, all the odd coefficients are 0.

+ 2n=2(n(n — 1) + n)CpX™ + ¢1X + Xpg CppX™ =

0



From equation (*) we can calculate the even coefficients, ¢y,,.

n=1: 2 ((—2(2)) n 22C2 _ 0

c _4(1 1
27 4020 Ty

2(-1)"2n
nz2 W + (2n)2c2n + Cypp =0
2(-1)"2n
4TL2C2n + Copn—2 = —W
! 2(=D)"*12n
CZTl = m [_CZH—Z W]
1 2
=2 Ca 4(2)2 [_CZ - E]
1 1 1 3
Ca =—[————] ==
16l 4 8 128
1 3
n=3: Ce =4(3)2 [—C4+m]
_ 113 3 ] 11
6 = 36l128 " T6(36)] T 13824°

So we get:

3

ya(x) = (]O(x))lnx+x:2__x4 S

x6 + ...
128 13824




