Series Solutions Near Regular Singular Points: The Frobenius Method

IfA(x)y" + B(x)y' + C(x)y = 0 and A, B, and C have no common factors
then points where A(x) = 0 are singular points of this equation.

Ex. (1 —x%)y" —2xy" +n(n+ 1)y = 0 (Legendre’s Equation) has
singular pointsat x = +1.

We will focus our attention on situations where x = 0 is the singular point. If
Xx = a were a singular point we could always make a substitution, t = x — a,
which would have a singular pointat t = 0.

We will consider equations of the form: A(x)y" + B(x)y' + C(x)y = 0,
where A, B, and C are analyticat x = 0 (i.e. A(x), B(x), and C(x) have

convergent power series in X around x = 0).

In general, if A(x) = 0 at x = 0, we will not be able to solve the equation with
a power series. However, in certain circumstances we will be able to generalize
the power series approach.



Ex. Bessel’s Equation has a singularity at x = 0.

x?y" +xy' +x%y =0

or

14 1 !
y +-y +y=0.

If we take A(x)y"" + B(x)y' + C(x)y = 0 and divide by A(x) we get:

y'+PXx)y +Qx)y =0

B(x) Q( ) C(x)

where P(x) = ek el

In our example, P (x) =i , Q(x) = 1.

We will see that we will be able to generalize the power series approach if P(x)

1
approaches infinity no more rapidly than X and Q (x) approaches infinity no

1
more rapidly than 72 3 X goes to zero from the right.

If we rewrite y"" + P(x)y’ + Q(x)y = 0 in the form:

,,+@ q(x)
X

xZ

y=20

where p(x) = xP(x) and q(x) = x2Q(x), then we have the
following definition.

Def. The singular point x = 0 is a regular singular point if the functions p(x)

and q(x) are both analytic at x = 0. Otherwise, it is an irregular singular

point.



EX. x%y" +xy' +x%y=0

144 1 !
y +1y +y=0.

Here, p(x) = x G) = land g(x) = x2(1) = x2.
Both p(x) and q(x) are analyticat x = 0 so x = 0 is a regular singular

point for this equation.

Ex. Consider the equation:
3x*y" + x%y' — (2x3 + x¥)y = 0.
Then:

iy , 2x3+x2 _
yo 3x2y x4 y=0

or:

1 2x+1

1" 3x .,/ _ _3 —
y+xy xzy—O.

So for this equation:

2x+1

p(x) === and q(x) =

1
In this case, p(x) is not analytic at x = 0 since llrgl G = To.

Thus, x = 0 is not a regular singular point.



Ex. Determine if x = 0 is an ordinary point, a regular singular point, or an

irregular singular point for the following equation:

x2B3—-x)y"+ Gx+x3)y + (2x—3)y =0.

x = 0 is a singular point since x2(3 — x) = 0 and (2x — 3) # 0 at

x =0. So

oo x(5+x2) 2x—3 _

t x2(3—x) x2(3—x)y =0
14/ 5+X2 ! 2X-3 _

y +x(3—x)y x2(3—x)y =0

5+x2 2x—3
" (3—=x) .1 B0 ., —
y+=——y +t-—7vy=0
5-+x2 2x—3
p(x) = 3_3; and g(x) = 3x_x are both analytic at x = 0 since they are

rational functions where denominators are not zero at x = 0.

Thus, x = 0 is a regular singular point.



The Method of Frobenius

Suppose we want to solve,
2.1 5 ! _
x°y” + JXy —y = 0.
Let’s guess the solutionis y = x".
y=x
y' =rx"t
y"' =r({r—-1)x""72,
Now substitute into the differential equation:
- 5 -
x2r(r—1)x""% + Sx(r)x’ 1—x"=0
5
r(r —1)x" +Erxr —x"=0

(r(r—1)+§r—1)xr=0

(r—%)(r+2)x’”=0

r=-2,-.

1

Soy =xzory = x 2

are solutions.
Notice that even though all of coefficients of the original equation are

analytic at x = 0, the solutions are not.

In general, if we have to solve x2y"" + xp(x)y’ + q(x)y = 0, where p(x)
and q(x) are power series, we might guess the solution has the form:

Y =X Y g X = X ey x™T = cox” + o x™t



An infinite series of this form is called a Frobenius series. Notice that it need not

. 1
be a power series as 7 may not be a positive integer. For example, if r = — 2
then:

1 1 3
Y =CoX 2+ Ccix2+ Cyx2 + -,

Ex. Let’s solve x2y"" + xp(x)y' + q(x)y = 0, where:
p(x) = po + D1X + px® + -+
q(x) = qo + q1x + @2 x% + -+ .
Let'sassume: Y = Yoo Cp X7
where ¢y # 0 (the series must have some nonzero first term)
Y = 0o+ r)c,xmt

y' =¥ (n+r)(n+r—1)c,x"" 2,

Substituting into x2y" + xp(x)y’ + q(x)y = 0, we get:

x2(r(r —Deox™ 2+ + 1D@)ex™ 1+ -4)
+ x(pg + p1x +pax? + - )(corx™ 1+ ¢, (r + Dx" + )
+ (qo + q1x + qox* + - )(cox" + 1 x™ + ) =0

() = Deox™ + (r + D(E)egx™L + )
+ (po + p1x + - )(corx” + ¢ (r + Dx"H +-4)

+(qo + q1x + - )(cox” + c1x™ 1 + ) = 0.



Let’s collect the coefficients of the x” term and set the expression equal to 0.
(r(r — 1)cg + pocor + qoco)x” =0

col()( —1) +por + qo] =0
r(r—1)+poyr +qo =0, sincecy # 0.

This last equation is called the indicial equation of the differential equation and
the roots, 1, are the exponents of the differential equation. If r; # 173, then
there are two possible Frobenius series solutions. If ;1 = 13, then there is only
one solution, and the second one can’t be found with this method. Notice, py
and g in the indicial equation, r(r — 1) + por + qo = 0, are just the values of
p(x) and g(x)atx = 0.

Ex. Find the exponents and the possible Frobenius series solutions of:

x2(1—x%)y" +2xy' =2y =0.

Dividing by x2 (1 — x?) we get:

" 2 I 2 _
y +x(1—x2)y _xz(l—xz)y =0
2 2
oy 1—x2 1 1-x2 . _
y +=y ——27y=0
2
So p(x) = Tz and p(0) =2

2
q(x) = — —— and q(0) = -2.



rr—=D)+pyr+qy=rr—1)+2r—2=20
r2—r+2r—2=r24r—-2=0
r+2)r—1)=0
r=-2, 1.
So the two possible Frobenius solutions are:

y1(x) =x2 X3 g anx™; Y2(X) = x Xp=o bpx™ .

Theorem: Suppose x = 0 is a regular singular point of

x2y" + xp(x)y’ + q(x)y = 0. Let p > 0 denote the
minimum of the radii of convergence of the power series

p(x) = Xn=oPnX" and q(x) = Xy qnx™.
Let 771 and 1, be the real roots, with 11 = 13, of the indicial equation:

r(r —1) + por + qo = 0. Then we can say,

a) For x > 0 there exists a solution of the equation
x2y" + xp(x)y’ + q(x)y = 0, of the form:

y1(x) =x" Y>> oa,x™ , ay # 0 corresponding to the larger root (17 )

b) If r; — 1, is neither 0 nor a positive integer, then there exists a second
linearly independent solution for x > 0 of the form:

yo(x) = x"2 Y o byx™ , by # 0 corresponding to the smaller root (1)

The radii of convergence of the power series for y; (x) and y,(x) are at least p.
The coefficients in these series can be determined by substituting the series in the
differential equation.



Ex. Find the Frobenius series solutions of:
2x%y" +xy' — (2x* + 1)y = 0.

Dividing by 2x2 we get,

1 1 2
o2 .0 _i(zx +1) —
v+ Y = V= 0.
. . . 1 1
So x = 0 is a regular singular point and py = 2 qo = -3 because
p(x) = % , q(x) = —%(sz + 1). Thus the indicial equation
becomes:
r(r—1)+%r—%= 0
r2—r+4-r—==0
2 2
r2—ir—2=0
2 2
1
(r + 5) r—1) =
r=—-,1

11 — T is neither zero nor a positive integer so we should get two
Frobenius solutions:

1
y1(x) = x 2 Yn-oanx™ and  yo(X) = X Ypzo bpx™.
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We will substitute y = Y0 ¢, x™t7

into the differential equation and solve for
1
the coefficients in terms of 7. Then we will substitute r; = — 2 and 1, = 1:

— o n+r
y - Zn:O Cnx

Y = 3% 0(n+ P
Y = T2+ 1)+ T = Degx™T2

n+r—1

2x2 Y2 m+r)(n+r— 1D, x™ 2+ x Y0 (n+1r)c,x™T L

—2x*+ 1) Xr e x™T =

Y o2m+r)(n+r—Dc,x™" + 32 j(n+ r)c,x™T

(0e] n+r+2 oo n+r _—
— Y0 2CpX — Ym0 CnX = 0.

Notice that: Yoo 2¢,x™T7+2 =¥ 2¢,_,x™T.

Ymo2m+r)(n+r—Dc,x™ + 32 j(n+ r)c,x™ T

(o) n+r o) n+r _—
- Zn:Z ch—zx - Zn=0 CnX = 0.

The common range of the summations is n = 2, so we have to handle
n =0, n =1 separately.

—_ 0. _ _ — 2 _ 1. _1\. _—
n=0: 2r(r—1)+r 1]c0—2(r ST 2)CO—O

Notice we get the indicial equation. This will always happen for n = 0.

, 1 1 : :
Since 7% — Sr—5 = 0 both 77 and 15, Cq is an arbitrary constant.



n=1 [2Q+r@)+ A +71r)—1]c; = (2r?+3r)c; = 0.

1
Since 2r2 + 3r # 0 forr = —5or 1, ¢; must be 0 in either case.

The coefficient of x™t7 forn > 2 is:
2n+ryin+r—Dc, +(n+71r)c, —2¢,_, — ¢, =0
2n+r)(n+r—-1)+n+7r)—1]c, = 2¢,,_5

[2(n+7)2—(n+71)—1]c, = 2¢,_,

Cp = 2Cn—2 ; n=2
" 2n+1r)2-(n+r)—-1 " -
Casel: r = —%
an — 22an_2 _ 2an_2 _ Zan_z . n 2 2

T Tk

Sincecy =a; =0, ayp+q = 0 foralln. Let’slookatn = 2,4, 6,8:

n=>2 a, = Qg

— _ %2 _ Qo
n=4 EEETORNETC

— __ag aop
n=6 %% = 30) T 23®©)
n=28 e -0

=103~ 20@G)©)303)

Qo
n!(5)(9):--(4n-3)

aZn
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1
_ — 24 1 a1 6, ...
y1(x) = apgx 2(1+x +2(5)x +2(3)(5)(9)x +
2n 4 ...
n!(5)(9)---(4n—3)x + )
1

() = agx B + 32, 2n)

1(5)(9)—(4n—3) *

Case2: 1, =1

2by— _ 2bp— — 2bn—p .

by, = 2m+1)2—(+1)—1 " 2n243n "~ n(2n+3)’

> 2.

n

Once again ¢; = 0 implies all odd b,;s are 0. Forn = 2,4, 6:

n=2 b, = b_70
_ _ bz _ bO
n=4 by = 2(11)  2(7)(11)
n==6 bs = 305 = 2@manas)
b

ban = n!(7)(11)(15)--(4n+3)

2

vy, (x) = byx(1 + x7 +

4 6

X X

xZn

n!(7)(11)(15) - (4n+3) +)

x2n

yZ(x) = bOx(l + Zn=1n|(7)(11)(15)(4n+3))

2han T zemmanas T
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General Solution:

1 hod x2n
y(x) = apx G) (1 + Z MO 3)>

n=1

xZn

Fhox(1 + ;n! (7)(11) - (4n + 3)

Ex. Find a Frobenius solution to Bessel’s equation of order 0:

x2y" + xy' + x%y = 0.

Dividing by x% we get: y" + iy' + i—jy =0

sop(x) =1, q(x) =x%andpy =1, qo = 0.

The indicial equation becomes: r(r — 1) +r+0 =0
r2=0; sor =0.

So there is only one Frobenius series solution since r; — 1, = 0.

y(x) = x° Yine=0 CnX".

This is, in fact, a power series. Substituting we get:

Y = Xp=o CnX"

y' = Siegne,x™ !

y" = Enzon(n — Depx™ ™

)

13
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X2y on(n— 1D, x" 2+ x Yo onc,x L+ x2 Yy e x™ =0
Yo n(n — Depx™ + X one,x™ + Yoo cpx™2 = 0.

Notice that: Yoo CpX™ 2 = Y2 5 cpi_px™
Y=o (M — D)epx™ + Yo Nepx™ + Xpig CpaX™ =

Yn=o[n(m — 1) + nlcyx™ + i, cppx™ =

0 2 n (o] n —
2n=0n CnX +Zn=2 Cpn—2X =

The first series starts with n = 0 and the second with n = 2 so we need
to separate the first two terms of the first series:

0%(co) + (1)?(c)x + Xza ncnx™ + Xiig CppX™ =

0%(co) + (1)?(c)x + Xza[n®cn + cpp]x™ = 0.

Forn = 0 we get 02(cy) = 0, so ¢y can be any constant.

Forn = 1 weget (1)?(c;) =0, so¢c; = 0.

1
Forn = 2 wegetn?c, + ¢,_, =0,s0¢, = —2Cn-2-
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Forn = 2,4, 6 we get:

_ 1
2= 5260
Cyp = ! —C ! C
Ceg = L C L C
6 — 62 4‘ 22(42)(62) 0
-1 n

T @)D (2n)2

since (22)(42)(62) ... 2n)? = 227(12)(22) ... (n)? = 22"(n!)?

(_1)nx2n

y1(x) = co Z?f:oW-

If we let c; = 1 we get the Bessel function of order zero of the first kind:

( 1)Tlx n
x) =

]0( ) Zn 022n( |)

We were only able to find one solution to x?y"" + xy’ — x%y = 0.
Later we will find a second linearly independent solution (which is not a

Frobenius series).



