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Series Solutions Near Regular Singular Points:  The Frobenius Method 

 

If 𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0 and 𝐴, 𝐵, and 𝐶 have no common factors 

then points where 𝐴(𝑥) = 0 are singular points of this equation. 

 

Ex.   (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0 (Legendre’s Equation) has 

 singular points at 𝑥 = ±1.  

 

We will focus our attention on situations where 𝑥 = 0 is the singular point. If 

𝑥 = 𝑎 were a singular point we could always make a substitution, 𝑡 = 𝑥 − 𝑎, 

which would have a singular point at 𝑡 = 0. 

 

We will consider equations of the form: 𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0, 

where 𝐴, 𝐵, and 𝐶 are analytic at 𝑥 = 0 (i.e. 𝐴(𝑥), 𝐵(𝑥), and 𝐶(𝑥) have 

convergent power series in 𝑥 around 𝑥 = 0). 

 

In general, if 𝐴(𝑥) = 0 at 𝑥 = 0, we will not be able to solve the equation with 

a power series. However, in certain circumstances we will be able to generalize 

the power series approach. 
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Ex.   Bessel’s Equation has a singularity at 𝑥 = 0. 

𝑥2𝑦′′ + 𝑥𝑦′ + 𝑥2𝑦 = 0 

 or 

                                                      𝑦′′ +
1

𝑥
𝑦′ + 𝑦 = 0.  

 

      If we take 𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0 and divide by 𝐴(𝑥) we  get: 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 

 where 𝑃(𝑥) =
𝐵(𝑥)

𝐴(𝑥)
 ,   𝑄(𝑥) =

𝐶(𝑥)

𝐴(𝑥)
.  

 In our example, 𝑃(𝑥) =
1

𝑥
 ,   𝑄(𝑥) = 1. 

 

We will see that we will be able to generalize the power series approach if 𝑃(𝑥) 

approaches infinity no more rapidly than 
1

𝑥
 and 𝑄(𝑥) approaches infinity no 

more rapidly than 
1

𝑥2 as 𝑥 goes to zero from the right. 

If we rewrite 𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 in the form: 

𝑦′′ +
𝑝(𝑥)

𝑥
𝑦′ +

𝑞(𝑥)

𝑥2
𝑦 = 0 

 where 𝑝(𝑥) = 𝑥𝑃(𝑥) and 𝑞(𝑥) = 𝑥2𝑄(𝑥), then we have the 

 following definition. 

 

Def.  The singular point 𝑥 = 0 is a regular singular point if the functions 𝑝(𝑥) 

         and 𝑞(𝑥) are both analytic at 𝑥 = 0. Otherwise, it is an irregular singular  

           point. 
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Ex.     𝑥2𝑦′′ + 𝑥𝑦′ + 𝑥2𝑦 = 0 

                                        𝑦′′ +
1

𝑥
𝑦′ + 𝑦 = 0.  

 

         Here, 𝑝(𝑥) = 𝑥 (
1

𝑥
) = 1 and 𝑞(𝑥) = 𝑥2(1) = 𝑥2. 

         Both 𝑝(𝑥) and 𝑞(𝑥) are analytic at 𝑥 = 0 so 𝑥 = 0 is a regular singular 

           point for this equation. 

 

 

Ex.  Consider the equation: 

3𝑥4𝑦′′ + 𝑥2𝑦′ − (2𝑥3 + 𝑥2)𝑦 = 0. 

 Then:  

𝑦′′ +  
1

3𝑥2 𝑦′ −
2𝑥3+𝑥2

3𝑥4 𝑦 = 0     

 or: 

𝑦′′ +  
1

3𝑥

𝑥
𝑦′ −

2𝑥+1
3

𝑥2 𝑦 = 0.      

 So for this equation: 

𝑝(𝑥) =
1

3𝑥
  and  𝑞(𝑥) =

2𝑥+1

3
.     

 In this case, 𝑝(𝑥) is not analytic at 𝑥 = 0 since lim
𝑥→0+

1

3𝑥
 = +∞ .   

Thus, 𝑥 = 0 is not a regular singular point. 
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Ex.  Determine if 𝑥 = 0 is an ordinary point, a regular singular point, or an 

       irregular singular point for the following equation: 

 

𝑥2(3 − 𝑥)𝑦′′ + (5𝑥 + 𝑥3)𝑦′ + (2𝑥 − 3)𝑦 = 0. 

 

 

 𝑥 = 0 is a singular point since 𝑥2(3 − 𝑥) = 0 and (2𝑥 − 3) ≠ 0 at 

          𝑥 = 0.  So    

 

𝑦′′ +
𝑥(5+𝑥2)

𝑥2(3−𝑥)
𝑦′ +

2𝑥−3

𝑥2(3−𝑥)
𝑦 = 0       

 

𝑦′′ +
5+𝑥2

𝑥(3−𝑥)
𝑦′ +

2𝑥−3

𝑥2(3−𝑥)
𝑦 = 0    

 

𝑦′′ +

5+𝑥2

(3−𝑥)

𝑥
𝑦′ +

2𝑥−3
(3−𝑥)

𝑥2 𝑦 = 0     

 

𝑝(𝑥) =
5+𝑥2

3−𝑥
 and 𝑞(𝑥) =

2𝑥−3

3−𝑥
 are both analytic at 𝑥 = 0 since they are  

rational functions where denominators are not zero at 𝑥 = 0.  

 

Thus, 𝑥 = 0 is a regular singular point. 
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The Method of Frobenius 

 

Suppose we want to solve, 

𝑥2𝑦′′ +
5

2
𝑥𝑦′ − 𝑦 = 0.  

Let’s guess the solution is 𝑦 = 𝑥𝑟. 

                                                 𝑦 = 𝑥𝑟 

                                                𝑦′ = 𝑟𝑥𝑟−1 

𝑦′′ = 𝑟(𝑟 − 1)𝑥𝑟−2. 

Now substitute into the differential equation: 

                   𝑥2𝑟(𝑟 − 1)𝑥𝑟−2 +
5

2
𝑥(𝑟)𝑥𝑟−1 − 𝑥𝑟 = 0   

𝑟(𝑟 − 1)𝑥𝑟 +
5

2
𝑟𝑥𝑟 − 𝑥𝑟 = 0  

 (𝑟(𝑟 − 1) +
5

2
𝑟 − 1) 𝑥𝑟 = 0  

            (𝑟 −
1

2
) (𝑟 + 2)𝑥𝑟 = 0  

        𝑟 = −2 ,
1

2
 . 

 So 𝑦 = 𝑥
1

2 or 𝑦 = 𝑥−2 are solutions. 

 Notice that even though all of coefficients of the original equation are  

           analytic at 𝑥 = 0, the solutions are not.  

 

In general, if we have to solve 𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, where 𝑝(𝑥) 

and 𝑞(𝑥) are power series, we might guess the solution has the form: 

𝑦 = 𝑥𝑟 ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = ∑ 𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 𝑐0𝑥𝑟 + 𝑐1𝑥𝑟+1 + ⋯.  
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An infinite series of this form is called a Frobenius series. Notice that it need not 

be a power series as 𝑟 may not be a positive integer. For example, if 𝑟 = −
1

2
  

then: 

𝑦 = 𝑐0𝑥−
1

2 + 𝑐1𝑥
1

2 + 𝑐2𝑥
3

2 + ⋯. 

 

Ex.  Let’s solve 𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, where: 

                                    𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + ⋯ 

𝑞(𝑥) = 𝑞0 + 𝑞1𝑥 + 𝑞2𝑥2 + ⋯  . 

 

          Let's assume:        𝑦 = ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0   

          where 𝑐0 ≠ 0 (the series must have some nonzero first term) 

                                       𝑦′ = ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0   

                     𝑦′′ = ∑ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟−2∞
𝑛=0 .  

 

 Substituting into 𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, we get: 

𝑥2(𝑟(𝑟 − 1)𝑐0𝑥𝑟−2 + (𝑟 + 1)(𝑟)𝑐1𝑥𝑟−1 + ⋯ )

+ 𝑥(𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + ⋯ )(𝑐0𝑟𝑥𝑟−1 + 𝑐1(𝑟 + 1)𝑥𝑟 + ⋯ )

+ (𝑞0 + 𝑞1𝑥 + 𝑞2𝑥2 + ⋯ )(𝑐0𝑥𝑟 + 𝑐1𝑥𝑟+1 + ⋯ ) = 0 

 

((𝑟)(𝑟 − 1)𝑐0𝑥𝑟 + (𝑟 + 1)(𝑟)𝑐1𝑥𝑟+1 + ⋯ )

+ (𝑝0 + 𝑝1𝑥 + ⋯ )(𝑐0𝑟𝑥𝑟 + 𝑐1(𝑟 + 1)𝑥𝑟+1 + ⋯ ) 

                                  +(𝑞0 + 𝑞1𝑥 + ⋯ )(𝑐0𝑥𝑟 + 𝑐1𝑥𝑟+1 + ⋯ ) = 0. 
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Let’s collect the coefficients of the 𝑥𝑟  term and set the expression equal to 0. 

                    (𝑟(𝑟 − 1)𝑐0 + 𝑝0𝑐0𝑟 + 𝑞0𝑐0)𝑥𝑟 = 0 

                              𝑐0[(𝑟)(𝑟 − 1) + 𝑝0𝑟 + 𝑞0] = 0  

                                         𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0,    since 𝑐0 ≠ 0. 

 

This last equation is called the indicial equation of the differential equation and 

the roots, 𝑟, are the exponents of the differential equation. If 𝑟1 ≠ 𝑟2, then 

there are two possible Frobenius series solutions.  If 𝑟1 = 𝑟2, then there is only 

one solution, and the second one can’t be found with this method. Notice, 𝑝0 

and 𝑞0 in the indicial equation, 𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0, are just the values of 

𝑝(𝑥) and 𝑞(𝑥) at 𝑥 = 0. 

 

Ex.  Find the exponents and the possible Frobenius series solutions of: 

𝑥2(1 − 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0. 

 

 Dividing by 𝑥2(1 − 𝑥2) we get: 

                           𝑦′′ +
2

𝑥(1−𝑥2)
𝑦′ −

2

𝑥2(1−𝑥2)
𝑦 = 0      

𝑦′′ +

2

1−𝑥2

𝑥
𝑦′ −

2

1−𝑥2

𝑥2 𝑦 = 0.      

 So              𝑝(𝑥) =
2

1−𝑥2  and 𝑝(0) = 2   

                  𝑞(𝑥) = −
2

1−𝑥2  and  𝑞(0) = −2 .   
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  𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 𝑟(𝑟 − 1) + 2𝑟 − 2 = 0 

           𝑟2 − 𝑟 + 2𝑟 − 2 = 𝑟2 + 𝑟 − 2 = 0 

              (𝑟 + 2)(𝑟 − 1) = 0  

                                        𝑟 = −2, 1.  

So the two possible Frobenius solutions are: 

𝑦1(𝑥) = 𝑥−2 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ;        𝑦2(𝑥) = 𝑥 ∑ 𝑏𝑛𝑥𝑛∞

𝑛=0  . 

 

Theorem:  Suppose 𝑥 = 0 is a regular singular point of 

        𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0. Let 𝜌 > 0 denote the   

         minimum of the radii of convergence of the power series 

𝑝(𝑥) = ∑ 𝑝𝑛𝑥𝑛∞
𝑛=0  and 𝑞(𝑥) = ∑ 𝑞𝑛𝑥𝑛∞

𝑛=0 . 

 Let 𝑟1 and 𝑟2 be the real roots, with 𝑟1 ≥ 𝑟2, of the indicial equation: 

           𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0. Then we can say, 

 

a) For 𝑥 > 0 there exists a solution of the equation  

𝑥2𝑦′′ + 𝑥𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, of the form: 

𝑦1(𝑥) = 𝑥𝑟1 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0  , 𝑎0 ≠ 0 corresponding to the larger root (𝑟1)  

 

b) If 𝑟1 − 𝑟2 is neither 0 nor a positive integer, then there exists a second 

linearly independent solution for 𝑥 > 0 of the form: 

𝑦2(𝑥) = 𝑥𝑟2 ∑ 𝑏𝑛𝑥𝑛∞
𝑛=0  , 𝑏0 ≠ 0 corresponding to the smaller root (𝑟2)  

 

The radii of convergence of the power series for 𝑦1(𝑥) and 𝑦2(𝑥) are at least 𝜌.  
The coefficients in these series can be determined by substituting the series in the 

differential equation. 
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Ex.  Find the Frobenius series solutions of:  

2𝑥2𝑦′′ + 𝑥𝑦′ − (2𝑥2 + 1)𝑦 = 0. 

 

 Dividing by 2𝑥2 we get, 

𝑦′′ +
1
2

𝑥
𝑦′ −

1
2

(2𝑥2+1)

𝑥2 𝑦 = 0.      

 

So 𝑥 = 0 is a regular singular point and 𝑝0 =
1

2
 ,   𝑞0 = −

1

2
  because 

𝑝(𝑥) =
1

2
 ,   𝑞(𝑥) = −

1

2
(2𝑥2 + 1).  Thus the indicial equation 

becomes: 

𝑟(𝑟 − 1) +
1

2
𝑟 −

1

2
= 0  

    𝑟2 − 𝑟 +
1

2
𝑟 −

1

2
= 0  

            𝑟2 −
1

2
𝑟 −

1

2
= 0  

     (𝑟 +
1

2
) (𝑟 − 1) = 0  

𝑟 = −
1

2
 , 1  

 

 𝑟1 − 𝑟2 is neither zero nor a positive integer so we should get two 

 Frobenius solutions: 

 

𝑦1(𝑥) = 𝑥−
1

2 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0     and    𝑦2(𝑥) = 𝑥 ∑ 𝑏𝑛𝑥𝑛∞

𝑛=0 . 
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We will substitute 𝑦 = ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0  into the differential equation and solve for 

the coefficients in terms of 𝑟. Then we will substitute 𝑟1 = −
1

2
 and 𝑟2 = 1: 

                              𝑦 = ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0   

                             𝑦′ = ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞
𝑛=0   

𝑦′′ = ∑ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟−2∞
𝑛=0   

 

2𝑥2 ∑ (𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟−2∞
𝑛=0 + 𝑥 ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟−1∞

𝑛=0                         

                                                                           −(2𝑥2 + 1) ∑ 𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 = 0  

 

∑ 2(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 + ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0                                  

                                                           − ∑ 2𝑐𝑛𝑥𝑛+𝑟+2∞
𝑛=0 − ∑ 𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 0.  

 

              Notice that:   ∑ 2𝑐𝑛𝑥𝑛+𝑟+2 =∞
𝑛=0 ∑ 2𝑐𝑛−2𝑥𝑛+𝑟∞

𝑛=2 . 

 

∑ 2(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛𝑥𝑛+𝑟∞
𝑛=0 + ∑ (𝑛 + 𝑟)𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0                                            

                                                − ∑ 2𝑐𝑛−2𝑥𝑛+𝑟∞
𝑛=2 − ∑ 𝑐𝑛𝑥𝑛+𝑟∞

𝑛=0 = 0.  

 

The common range of the summations is 𝑛 ≥ 2, so we have to handle               

𝑛 = 0,   𝑛 = 1 separately.   

 𝑛 = 0:   [2𝑟(𝑟 − 1) + 𝑟 − 1]𝑐0 = 2 (𝑟2 −
1

2
𝑟 −

1

2
) 𝑐0 = 0 

Notice we get the indicial equation. This will always happen for 𝑛 = 0. 

Since 𝑟2 −
1

2
𝑟 −

1

2
= 0 both 𝑟1 and 𝑟2,  𝑐0 is an arbitrary constant. 

 



11 
 

𝑛 = 1:   [2(1 + 𝑟)(𝑟) + (1 + 𝑟) − 1]𝑐1 = (2𝑟2 + 3𝑟)𝑐1 = 0. 

Since 2𝑟2 + 3𝑟 ≠ 0 for 𝑟 = −
1

2
 or  1, 𝑐1 must be 0 in either case.  

 

The coefficient of 𝑥𝑛+𝑟 for 𝑛 ≥ 2 is:  

    2(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑐𝑛 + (𝑛 + 𝑟)𝑐𝑛 − 2𝑐𝑛−2 − 𝑐𝑛 = 0 

                        [2(𝑛 + 𝑟)(𝑛 + 𝑟 − 1) + (𝑛 + 𝑟) − 1]𝑐𝑛 = 2𝑐𝑛−2 

                                            [2(𝑛 + 𝑟)2 − (𝑛 + 𝑟) − 1]𝑐𝑛 = 2𝑐𝑛−2 

𝑐𝑛 =
2𝑐𝑛−2

2(𝑛 + 𝑟)2 − (𝑛 + 𝑟) − 1
   ;     𝑛 ≥ 2. 

Case 1:  𝑟1 = −
1

2
 

          𝑎𝑛 =
2𝑎𝑛−2

2(𝑛−
1
2

)
2

−(𝑛−
1
2

)−1
=

2𝑎𝑛−2

2𝑛2−3𝑛
=

2𝑎𝑛−2

𝑛(2𝑛−3)
;         𝑛 ≥ 2    

 Since 𝑐1 = 𝑎1 = 0 , 𝑎2𝑛+1 = 0 for all 𝑛. Let’s look at 𝑛 = 2, 4, 6,8: 

            𝑛 = 2                    𝑎2 = 𝑎0 

            𝑛 = 4                    𝑎4 =
𝑎2

2(5)
=

𝑎0

2(5)
 

            𝑛 = 6                    𝑎6 =
𝑎4

3(9)
=

𝑎0

2(3)(5)(9)
 

             𝑛 = 8                   𝑎8 =
𝑎6

4(13)
=

𝑎0

2(3)(4)(5)(9)(13)
 

                              𝑎2𝑛 =
𝑎0

𝑛!(5)(9)⋯(4𝑛−3)
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𝑦1(𝑥) = 𝑎0𝑥−
1

2 (1 + 𝑥2 +
1

2(5)
𝑥4 +

1

2(3)(5)(9)
𝑥6 + ⋯ +

1

𝑛!(5)(9)⋯(4𝑛−3)
𝑥2𝑛 + ⋯ ).  

                 𝑦1(𝑥) = 𝑎0𝑥
−(

1

2
)
(1 + ∑

1

𝑛!(5)(9)⋯(4𝑛−3)
𝑥2𝑛∞

𝑛=1 ).  

 

Case 2:  𝑟2 = 1 

       𝑏𝑛 =
2𝑏𝑛−2

2(𝑛+1)2−(𝑛+1)−1
=

2𝑏𝑛−2

2𝑛2+3𝑛
=

2𝑏𝑛−2

𝑛(2𝑛+3)
;        𝑛 ≥ 2.    

 Once again 𝑐1 = 0 implies all odd 𝑏𝑛s are 0.  For 𝑛 = 2, 4, 6: 

          𝑛 = 2               𝑏2 =
𝑏0

7
      

           𝑛 = 4               𝑏4 =
𝑏2

2(11)
=

𝑏0

2(7)(11)
    

           𝑛 = 6                𝑏6 =
𝑏4

3(15)
=

𝑏0

2(3)(7)(11)(15)
 

                      𝑏2𝑛 =
𝑏0

𝑛!(7)(11)(15)⋯(4𝑛+3)
 

 

𝑦2(𝑥) = 𝑏0𝑥(1 + 
𝑥2

7
+

𝑥4

2(7)(11)
+

𝑥6

2(3)(7)(11)(15)
+ ⋯ +

𝑥2𝑛

𝑛!(7)(11)(15)⋯(4𝑛+3)
+ ⋯ ) 

                  

               𝑦2(𝑥) = 𝑏0𝑥(1 + ∑
𝑥2𝑛

𝑛!(7)(11)(15)⋯(4𝑛+3)
∞
𝑛=1 ).    
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General Solution: 

𝑦(𝑥) = 𝑎0𝑥
−(

1

2
)

(1 + ∑
𝑥2𝑛

𝑛! (5)(9) ⋯ (4𝑛 − 3)

∞

𝑛=1

) 

                                                                             +𝑏0𝑥(1 + ∑
𝑥2𝑛

𝑛! (7)(11) ⋯ (4𝑛 + 3)
)

∞

𝑛=1

 

 

 

Ex.  Find a Frobenius solution to Bessel’s equation of order 0: 

𝑥2𝑦′′ + 𝑥𝑦′ + 𝑥2𝑦 = 0. 

 

 Dividing by 𝑥2 we get:   𝑦′′ +
1

𝑥
𝑦′ +

𝑥2

𝑥2 𝑦 = 0  

 So 𝑝(𝑥) = 1, 𝑞(𝑥) = 𝑥2 and 𝑝0 = 1,   𝑞0 = 0.     

 The indicial equation becomes:  𝑟(𝑟 − 1) + 𝑟 + 0 = 0 

                                               𝑟2 = 0;    so 𝑟 = 0. 

 So there is only one Frobenius series solution since 𝑟1 − 𝑟2 = 0. 

𝑦(𝑥) = 𝑥0 ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 .  

 This is, in fact, a power series. Substituting we get: 

                                        𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0   

                                        𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=0   

𝑦′′ = ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=0    
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𝑥2 ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=0 + 𝑥 ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=0 + 𝑥2 ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = 0  

                    ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛∞
𝑛=0 + ∑ 𝑛𝑐𝑛𝑥𝑛∞

𝑛=0 + ∑ 𝑐𝑛𝑥𝑛+2∞
𝑛=0 = 0.  

 

                  Notice that:    ∑ 𝑐𝑛𝑥𝑛+2∞
𝑛=0 = ∑ 𝑐𝑛−2𝑥𝑛∞

𝑛=2 .  

          ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛∞
𝑛=0 + ∑ 𝑛𝑐𝑛𝑥𝑛∞

𝑛=0 + ∑ 𝑐𝑛−2𝑥𝑛∞
𝑛=2 = 0  

                            ∑ [𝑛(𝑛 − 1) + 𝑛]𝑐𝑛𝑥𝑛∞
𝑛=0 + ∑ 𝑐𝑛−2𝑥𝑛∞

𝑛=2 = 0  

                                                    ∑ 𝑛2𝑐𝑛𝑥𝑛∞
𝑛=0 + ∑ 𝑐𝑛−2𝑥𝑛∞

𝑛=2 = 0.  

 

The first series starts with 𝑛 = 0 and the second with 𝑛 = 2 so we need 

to separate the first two terms of the first series: 

   02(𝑐0) + (1)2(𝑐1)𝑥 + ∑ 𝑛2𝑐𝑛𝑥𝑛∞
𝑛=2 + ∑ 𝑐𝑛−2𝑥𝑛∞

𝑛=2 = 0  

                             02(𝑐0) + (1)2(𝑐1)𝑥 + ∑ [𝑛2𝑐𝑛 + 𝑐𝑛−2]𝑥𝑛∞
𝑛=2 = 0.  

 

 

 For 𝑛 = 0 we get 02(𝑐0) = 0,  so 𝑐0 can be any constant. 

 For 𝑛 = 1 we get (1)2(𝑐1) = 0, so 𝑐1 = 0. 

 For 𝑛 ≥ 2 we get 𝑛2𝑐𝑛 + 𝑐𝑛−2 = 0, so 𝑐𝑛 = −
1

𝑛2 𝑐𝑛−2. 
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For 𝑛 = 2, 4, 6 we get: 

       𝑐2 = −
1

22 𝑐0   

       𝑐4 = −
1

42 𝑐2 =
1

22(42)
𝑐0 

       𝑐6 =  −
1

62 𝑐4 = −
1

22(42)(62)
𝑐0 

                                ⟹     𝑐2𝑛 =
(−1)𝑛

(22)(42)(62)…(2𝑛)2 𝑐0.  

 

 Since (22)(42)(62) … (2𝑛)2 = 22𝑛(12)(22) … (𝑛)2 = 22𝑛(𝑛!)2  

 

𝑦1(𝑥) = 𝑐0 ∑
(−1)𝑛𝑥2𝑛

22𝑛(𝑛!)
2

∞
𝑛=0  .     

 

 If we let 𝑐0 = 1 we get the Bessel function of order zero of the first kind: 

𝐽0(𝑥) = ∑
(−1)𝑛𝑥2𝑛

22𝑛(𝑛!)
2

∞
𝑛=0  .   

 

 We were only able to find one solution to 𝑥2𝑦′′ + 𝑥𝑦′ − 𝑥2𝑦 = 0. 

 Later we will find a second linearly independent solution (which is not a 

            Frobenius series). 


