Series Solutions Near Ordinary Points

A general homogeneous second order linear differential equation with analytic
coefficients (i.e. the functions can be represented by power series) has the form:

AX)y" + B(x)y' + C(x)y = 0.

If A(x) # O for any X in an open interval, I, then we can divide the equation by
A(x) to get:

y'+ P(x)y’ +Q(x)y = 0.

B(x
Here, P(x) = Q and Q(x) = ==, but what happens if there is a point

where A(x) = 0?

Ex. x2y" +y' + x3y = 0, dividing by x? we get:
1, _
y" +=y +xy=0.

1
P(x) = — is not analytic at x = 0.

Def. If we consider the equation: y"" + P(x)y' + Q(x)y =0, thenx = a is

called an ordinary point of this equation (and of the equation
A()y" + B(x)y" + C(x)y = 0)if P(x) and Q(x) are both analytic at

X = a. Otherwise X = a is called a singular point.

1
Ex. Forthe equation y'" + Fy' + xy = 0, x = 0is asingular point and

x # 0 are ordinary points.



Ex. Forthe equation (x2 — 1)y + 3x2 + 1)y’ + (5 —x)y = 0,
x = 0 is an ordinary point but x = +1 are singular points because:

(3x +1) (5—x)

o Y Yy T

P(x) and Q(x) don’t have convergent Taylor series around
x = +1, but they do for x # +1 (which includes x = 0).

"+ 0

So x # *1 are all ordinary points.

Theorem: Suppose that @ is an ordinary point of the equation,

AX)y" + B(x)y' + C(x)y = 0.

Thatis, P(x) = ZE i nd Q(x) = mare analyticat x = a.

Then the differential equation has two linearly independent solutions each
of the form:

y(x) = Tp Culx — @)™
The radius of convergence is at least as large as the distance of a to the

nearest (real or complex) singular point.

Ex. Determine the radius of convergence guaranteed by the previous
theorem of a series solution of: (x + 25)y"” + xy’' + x?y = 0in

powers of X. What if it’s in powers of x — 47

x2
P() =730 Q) =i

P(x) and Q(x) have singular points at x = £5i.



5i So if we use powers of X, @ = 0 and the radius of

convergence of the series solution: y = Y>> o cpx™.

T —5i is at least 5, the distance between 0 and the

nearest singular point +5i.

If the series solution is powers of X — 4, then a = 4. The distance

between 4 and +5i is vV41. So the radius of convergence of a series
solutiony = Yoo d,, (x — 4)" is at least V41.

Ex. Find the general solution in powers of x of
(x?2 = 2)y" +5xy' + 4y = 0.

Then find the particular solution with y(0) = 4, y'(0) = 1.

The only singular points are at x = i\/i, so the radius of convergence of the

solution should be at least \/E



y=Znmotnx™; ¥ =Epaancax™ Y =Ep,n(n - Depx™?

Substituting into (x%2 — 2)y"" + 5xy’ + 4y = 0 we get:

(x2=2)Y>  n(n—1Dcx™ 2+ 5x Y0 ne,x™ 1+ 4% c,x™ =

Yoo n(n — Depx™ — Yooop 2n(n — 1)cpx™ 2
+ Yo Snc,x™ + Yo g 4c,x™ = 0.

Notice we can start the first and third sums from n = 0 since that won’t

change the values of each expression.

dn—on(n — Deyx™ — Y7, 2n(n — 1)Cnxn_2
+ Yo Snc, x™ + Yoo 4c,x™ = 0.

The powers of X in the second term don't line up with the others so we can say:

Y=z 2n(m — Depx™™ =370 2(n + 2)(n + 1)cpypx™

YoM — Depx™ =X 02(n + 2)(n + 1)cpypx™

+ Yo Snc, x™ + Yo p4c,x" =0

Ymeoln(n — e, —2n+ 1)(n + 2)cyyp + 5nc, + 4c,]x™ = 0.



Sosolve: nn—1)c, —2(n+1)(n+ 2)c,4, + 5nc, +4c, =0
[n(n—1)+5n+4]c, =2(n+ 1D(n + 2)cyy-

(> +4n+4)c, =2(n+ D(n + 2)cpqy

n+2
Cn+2 = mcn forn = 0.
Withn = 0, 2,4 we get
_ 2
C2 = 2(1) CO
a2
“4=3%2 T 2@
6 248
T35 T B30EE O
_ 2@@e)-@n)
= T anee-een@ =1

Let's define 2n + DN =1(B)(5B) - 2n+1) = (2n+1)!

2n(n!) ’
and we know 2(4)(6) --- (2n) = 2™(n!), so we can say:

o 2'(n) o= n! c
©2n = onn—nn 0 T Gn=nn “0




withn =1, 3,5 we get

_ 3
C3 = 2(2) C1
_ 5 __ 3(5)
ST T 2@
_ 7 350
77205 T Bo)@we
_ 3(5)(7)+(2n+1) _ (@n+1)! _ @n+1)!

Can+1 = e)@e-an T zremmn T e v 2L

So we now have the general solution:

y(x) = co(1+ Xn=1

22n(n!)

n! .
(2n-1)!! X" + e (x + Xoeq

or alternatively:
_ 2,2.4,2 56 155
y(x)—co(1+x +ox"+x +---)+c1(x+ x3 +55 +Ex + - )

Notice that y(0) = ¢y, y'(0) = ¢; so we can write:

4=y0)=cy, 1=y(0) =, =

X n) + (x +Zn=122n—(n!)x n )

y(x) = 4(1 + ZTL=1 (27’1—1)”

or alternatively:

y(x) =4 +x+4x2 + 223+ 2xt + x5 4 -



Translated Series Solutions

If in the previous example we were given initial conditions in terms of y(a) and
y'(a), where a # 0, we would need to find the general solution as a power
series around a:

y(x) = Yp=o Cn(x —a)™

One way around this is to make a substitution, Z = x — a, and get a solution in
terms of z:

Y(2) = Xn=o CnZ"

Ex. Solve the initial value problem:
2 _ oy _ 1) _\¥ _
(t*—2t—1) 2t 5t—1) T 4y =0

y()=4, y@=1L1

We want a solution: Y = Yo Cn(t — 1",

Make a substitution X = t — 1 into the differential equation (we can do

thissincex =t—1 = x+1=1t).

t?2—2t—1=(x+1?-2(x+1)—-1=x%2-2
5(t —1) = 5x



dy_dydx_dy_ ,
dt dxdt dx

a?y _ d d_y)_ AN L
dtz_dt(dt _(x(y) ac Y

So the differential equation becomes:
(x2=2)y" +5xy'+4y =0
y(0)=4, y'(0)=1

Which we solved in the previous example.

So the solution to the original problem is what we get when we
substitute x = t — 1 in our previous solution:

y(t) =4+(t—1)+4(t—1)2+2(t—1)3 +§(t_1)4+...

Legendre’s Equation

The Legendre Equation of order « is:
(1—x%)y" —2xy"+ala+1)y=0

This equation comes up in many places. Among them is the problem of
determining the steady state temperature within a solid sphere when the
temperature on the boundary is known.

If we substitute a power series in x for y"’, y’, and y and combine the

coefficients of x™ we will find:

_ (a—m)(a+m+1)
Cm+2 = Toni D (mr2) oM




This leads to:

a(a—2)(a—4)...(a—2m+2)(a+1)(a+3)...(a+2m—1

(a—D(a=3)...(a—2m+1D)(a+2)(a+4)...(a+2m)
C2m+1 = (_1)m (2m+1)' Cl'

We can then write:

— m — m
Com = (=1)™azmco and Cami1 = (1) " azmi161
where a,,, and a,,,+1 are the messy fractions in the expressions of C,,, and

Com+1-

The general solution to Legendre’s Equation then becomes:

Y(x) = o Xm=o(—1)™ azmx®™ + 1 X o(—1)™ Ay 22T

Now notice that if @ = n, a positive even integer, then d,,,;, = 0 when
2m > n. In that case:

Co Xm=o(—1)™ a2mx2m

is a polynomial of degree n (i.e. there are a finite number of terms) but,

€1 Xm=o(—1D™ 512m+1xzm+1

is a nonterminating infinite series (it has an infinite number of nonzero

terms).



If @ = n, a positive odd integer, then dy;,, 14 = 0 when 2m + 1 > n. In this
case:

€1 Zm=o(—1)™ ‘12m+1xzm+1

is a polynomial of degree n and,

Co Xm=o(—1)™ azmem

is a nonterminating infinite series.

So if 1 is an integer, the nt" degree polynomial solution of:
(1—x2)y" =2xy'+n(n+ 1)y =0

is denoted by P, (x) and is called the Legendre Polynomial of degree n.
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