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Series Solutions Near Ordinary Points 

 

A general homogeneous second order linear differential equation with analytic 

coefficients (i.e. the functions can be represented by power series) has the form: 

𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0. 

If 𝐴(𝑥) ≠ 0 for any 𝑥 in an open interval, 𝐼, then we can divide the equation by 

𝐴(𝑥) to get: 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0. 

Here, 𝑃(𝑥) =
𝐵(𝑥)

𝐴(𝑥)
 and  𝑄(𝑥) =

𝐶(𝑥)

𝐴(𝑥)
 , but what happens if there is a point 

where 𝐴(𝑥) = 0? 

 

Ex.  𝑥2𝑦′′ + 𝑦′ + 𝑥3𝑦 = 0, dividing by 𝑥2 we get: 

𝑦′′ +
1

𝑥2 𝑦′ + 𝑥𝑦 = 0.  

𝑃(𝑥) =
1

𝑥2 is not analytic at 𝑥 = 0. 

 

Def.  If we consider the equation:  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0, then 𝑥 = 𝑎 is 

         called an ordinary point of this equation (and of the equation       

        𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0) if 𝑃(𝑥) and 𝑄(𝑥) are both analytic at 

         𝑥 = 𝑎. Otherwise 𝑥 = 𝑎 is called a singular point. 

 

Ex.   For the equation 𝑦′′ +
1

𝑥2 𝑦′ + 𝑥𝑦 = 0,   𝑥 = 0 is a singular point and  

       𝑥 ≠ 0 are ordinary points. 
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Ex.      For the equation (𝑥2 − 1)𝑦′′ + (3𝑥2 + 1)𝑦′ + (5 − 𝑥)𝑦 = 0,  

 𝑥 = 0 is an ordinary point but 𝑥 = ±1 are singular points because: 

𝑦′′ +  
(3𝑥2+1)

(𝑥2−1)
𝑦′ +

(5−𝑥)

(𝑥2−1)
𝑦 = 0      

 𝑃(𝑥) and 𝑄(𝑥) don’t have convergent Taylor series around  

 𝑥 = ±1, but they do for 𝑥 ≠ ±1 (which includes 𝑥 = 0). 

 So 𝑥 ≠ ±1 are all ordinary points. 

 

Theorem: Suppose that 𝑎 is an ordinary point of the equation, 

𝐴(𝑥)𝑦′′ + 𝐵(𝑥)𝑦′ + 𝐶(𝑥)𝑦 = 0. 

 That is, 𝑃(𝑥) =
𝐵(𝑥)

𝐴(𝑥)
 and 𝑄(𝑥) =

𝐶(𝑥)

𝐴(𝑥)
 are analytic at 𝑥 = 𝑎.   

 Then the differential equation has two linearly independent solutions each 

            of the form: 

𝑦(𝑥) = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 .  

 The radius of convergence is at least as large as the distance of 𝑎 to the  

            nearest (real or complex) singular point. 

 

Ex.  Determine the radius of convergence guaranteed by the previous 

        theorem of a series solution of: (𝑥2 + 25)𝑦′′ + 𝑥𝑦′ + 𝑥2𝑦 = 0 in  

        powers of 𝑥. What if it’s in powers of 𝑥 − 4? 

 

𝑃(𝑥) =
𝑥

𝑥2+25
 ;    𝑄(𝑥) =

𝑥2

𝑥2+25
     

𝑃(𝑥) and 𝑄(𝑥) have singular points at 𝑥 = ±5𝑖. 
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         5𝑖           So if we use powers of 𝑥, 𝑎 = 0 and the radius of  

                           convergence of the series solution:    𝑦 = ∑ 𝑐𝑛𝑥𝑛.∞
𝑛=0   

 

      

       4 

 

 

           −5𝑖   is at least 5, the distance between 0 and the  

                                             nearest singular point ±5𝑖.  

 

 

If the series solution is powers of 𝑥 − 4, then 𝑎 = 4. The distance 

 between 4 and ±5𝑖 is √41. So the radius of convergence of a series 

 solution 𝑦 = ∑ 𝑑𝑛(𝑥 − 4)𝑛∞
𝑛=0  is at least √41. 

 

 

Ex.  Find the general solution in powers of 𝑥 of  

(𝑥2 − 2)𝑦′′ + 5𝑥𝑦′ + 4𝑦 = 0. 

      Then find the particular solution with 𝑦(0) = 4,   𝑦′(0) = 1. 

 

      The only singular points are at 𝑥 = ±√2, so the radius of convergence of the 

       solution should be at least √2. 
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𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 ;     𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1 ;     𝑦′′ = ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2   

 

 Substituting into  (𝑥2 − 2)𝑦′′ + 5𝑥𝑦′ + 4𝑦 = 0 we get: 

 

 (𝑥2 − 2) ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2 + 5𝑥 ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1 + 4 ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = 0 

 

∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛 −∞
𝑛=2 ∑ 2𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞

𝑛=2                                                                       

                                                                    + ∑ 5𝑛𝑐𝑛𝑥𝑛∞
𝑛=1 + ∑ 4𝑐𝑛𝑥𝑛∞

𝑛=0 = 0. 

 

 Notice we can start the first and third sums from 𝑛 = 0 since that won’t 

            change the values of each expression.   

∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛 −∞
𝑛=0 ∑ 2𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞

𝑛=2                                                                 

                                                                     + ∑ 5𝑛𝑐𝑛𝑥𝑛∞
𝑛=0 + ∑ 4𝑐𝑛𝑥𝑛∞

𝑛=0 = 0.   

 

The powers of 𝑥 in the second term don't line up with the others so we can say: 

∑ 2𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2 = ∑ 2(𝑛 + 2)(𝑛 + 1)𝑐𝑛+2𝑥𝑛∞

𝑛=0   

 

 ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛 −∞
𝑛=0 ∑ 2(𝑛 + 2)(𝑛 + 1)𝑐𝑛+2𝑥𝑛∞

𝑛=0  

                                                                 + ∑ 5𝑛𝑐𝑛𝑥𝑛∞
𝑛=0 + ∑ 4𝑐𝑛𝑥𝑛∞

𝑛=0 = 0  

 

 

          ∑ [𝑛(𝑛 − 1)𝑐𝑛 − 2(𝑛 + 1)(𝑛 + 2)𝑐𝑛+2 + 5𝑛𝑐𝑛 + 4𝑐𝑛]𝑥𝑛∞
𝑛=0 = 0.  
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   So solve:      𝑛(𝑛 − 1)𝑐𝑛 − 2(𝑛 + 1)(𝑛 + 2)𝑐𝑛+2 + 5𝑛𝑐𝑛 + 4𝑐𝑛 = 0  

 

                       [𝑛(𝑛 − 1) + 5𝑛 + 4]𝑐𝑛 = 2(𝑛 + 1)(𝑛 + 2)𝑐𝑛+2  

 

                                   (𝑛2 + 4𝑛 + 4)𝑐𝑛 = 2(𝑛 + 1)(𝑛 + 2)𝑐𝑛+2  

 

                                                          𝑐𝑛+2 =
𝑛+2

2(𝑛+1)
𝑐𝑛    for 𝑛 ≥ 0. 

 With 𝑛 = 0, 2, 4 we get  

                                           𝑐2 =
2

2(1)
𝑐0  

𝑐4 =
4

2(3)
𝑐2 =

2(4)

22(1)(3)
𝑐0  

                                           𝑐6 =
6

2(5)
𝑐4 =

2(4)(6)

23(1)(3)(5)
𝑐0  

                           ⟹         𝑐2𝑛 =
2(4)(6)⋯(2𝑛)

2𝑛(1)(3)(5)⋯(2𝑛−1)
𝑐0;       𝑛 ≥ 1.  

 

 

 Let’s define (2𝑛 + 1)‼ = 1(3)(5) ⋯ (2𝑛 + 1) =
(2𝑛+1)!

2𝑛(𝑛!)
 ,  

         and we know 2(4)(6) ⋯ (2𝑛) = 2𝑛(𝑛!), so we can say: 

                                          𝑐2𝑛 = 
2𝑛(𝑛!)

2𝑛(2𝑛−1)‼
𝑐0 =

𝑛!

(2𝑛−1)‼
𝑐0. 
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 With 𝑛 = 1, 3, 5 we get 

                                           𝑐3 =
3

2(2)
𝑐1  

𝑐5 =
5

2(4)
𝑐3 =

3(5)

22(2)(4)
𝑐1  

                                           𝑐7 =
7

2(6)
𝑐5 =

3(5)(7)

23(2)(4)(6)
𝑐1  

𝑐2𝑛+1 =
3(5)(7)⋯(2𝑛+1)

2𝑛(2)(4)(6)⋯(2𝑛)
𝑐1 =

(2𝑛+1)‼

2𝑛(2𝑛)(𝑛!)
𝑐1 =

(2𝑛+1)‼

22𝑛(𝑛!)
𝑐1,    𝑛 ≥ 1.  

 

 So we now have the general solution: 

𝑦(𝑥) = 𝑐0(1 + ∑
𝑛!

(2𝑛−1)‼
𝑥2𝑛)∞

𝑛=1 + 𝑐1(𝑥 + ∑
(2𝑛+1)‼

22𝑛(𝑛!)
𝑥2𝑛+1)∞

𝑛=1   

 

 or alternatively: 

𝑦(𝑥) = 𝑐0 (1 + 𝑥2 +
2

3
𝑥4 +

2

5
𝑥6 + ⋯ ) + 𝑐1 (𝑥 +

3

4
𝑥3 +

15

32
𝑥5 +

35

128
𝑥7 + ⋯ ).  

  

Notice that 𝑦(0) = 𝑐0,   𝑦′(0) = 𝑐1 so we can write: 

               4 = 𝑦(0) = 𝑐0 , 1 = 𝑦′(0) = 𝑐1          ⟹  

 

𝑦(𝑥) = 4(1 + ∑
𝑛!

(2𝑛−1)‼
𝑥2𝑛)∞

𝑛=1 + (𝑥 + ∑
(2𝑛+1)‼

22𝑛(𝑛!)
𝑥2𝑛+1)∞

𝑛=1    

 

or alternatively: 

𝑦(𝑥) = 4 + 𝑥 + 4𝑥2 +
3

4
𝑥3 +

8

3
𝑥4 +

15

32
𝑥5 + ⋯ . 
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Translated Series Solutions 

If in the previous example we were given initial conditions in terms of 𝑦(𝑎) and 

𝑦′(𝑎), where 𝑎 ≠ 0, we would need to find the general solution as a power 

series around 𝑎: 

 

𝑦(𝑥) = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 .  

 

One way around this is to make a substitution, 𝑧 = 𝑥 − 𝑎, and get a solution in 

terms of 𝑧: 

𝑦(𝑧) = ∑ 𝑐𝑛𝑧𝑛∞
𝑛=0   

 

 

 

Ex.    Solve the initial value problem: 

(𝑡2 − 2𝑡 − 1)
𝑑2𝑦

𝑑𝑡2 + 5(𝑡 − 1)
𝑑𝑦

𝑑𝑡
+ 4𝑦 = 0  

𝑦(1) = 4 , 𝑦′(1) = 1. 

 

 We want a solution:          𝑦 = ∑ 𝑐𝑛(𝑡 − 1)𝑛.∞
𝑛=0    

 

 Make a substitution 𝑥 = 𝑡 − 1 into the differential equation (we can do  

           this since 𝑥 = 𝑡 − 1 ⟹  𝑥 + 1 = 𝑡).  

 

𝑡2 − 2𝑡 − 1 = (𝑥 + 1)2 − 2(𝑥 + 1) − 1 = 𝑥2 − 2  

                         5(𝑡 − 1) = 5𝑥 
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𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑥
 = 𝑦′  

                                   
𝑑2𝑦

𝑑𝑡2 =
𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑡
) = (

𝑑

𝑑𝑥
(𝑦′))

𝑑𝑥

𝑑𝑡
 = 𝑦′′  

 

 So the differential equation becomes: 

(𝑥2 − 2)𝑦′′ + 5𝑥𝑦′ + 4𝑦 = 0 

𝑦(0) = 4 , 𝑦′(0) = 1 

          Which we solved in the previous example.  

 

 So the solution to the original problem is what we get when we 

 substitute 𝑥 = 𝑡 − 1 in our previous solution: 

𝑦(𝑡) = 4 + (𝑡 − 1) + 4(𝑡 − 1)2 +
3

4
(𝑡 − 1)3 +

8

3
(𝑡 − 1)4 + ⋯  

 

Legendre’s Equation 

The Legendre Equation of order 𝛼 is: 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝛼(𝛼 + 1)𝑦 = 0 

This equation comes up in many places.  Among them is the problem of 

determining the steady state temperature within a solid sphere when the 

temperature on the boundary is known. 

 

If we substitute a power series in 𝑥 for 𝑦′′, 𝑦′, and 𝑦 and combine the 

coefficients of 𝑥𝑛 we will find: 

𝑐𝑚+2 =
(𝛼−𝑚)(𝛼+𝑚+1)

(𝑚+1)(𝑚+2)
𝑐𝑚 .    
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This leads to: 

     𝑐2𝑚 = (−1)𝑚 𝛼(𝛼−2)(𝛼−4)…(𝛼−2𝑚+2)(𝛼+1)(𝛼+3)…(𝛼+2𝑚−1)

(2𝑚)!
𝑐0    

        𝑐2𝑚+1 = (−1)𝑚 (𝛼−1)(𝛼−3)…(𝛼−2𝑚+1)(𝛼+2)(𝛼+4)…(𝛼+2𝑚)

(2𝑚+1)!
𝑐1.    

 

We can then write:  

𝑐2𝑚 = (−1)𝑚𝑎2𝑚𝑐0    and    𝑐2𝑚+1 = (−1)𝑚𝑎2𝑚+1𝑐1 

where 𝑎2𝑚 and 𝑎2𝑚+1 are the messy fractions in the expressions of 𝑐2𝑚 and 

𝑐2𝑚+1.  

 

The general solution to Legendre’s Equation then becomes: 

 

𝑦(𝑥) = 𝑐0 ∑ (−1)𝑚∞
𝑚=0 𝑎2𝑚𝑥2𝑚 + 𝑐1 ∑ (−1)𝑚∞

𝑚=0 𝑎2𝑚+1𝑥2𝑚+1.  

 

Now notice that if 𝛼 = 𝑛, a positive even integer, then 𝑎2𝑚 = 0 when      

2𝑚 > 𝑛. In that case: 

𝑐0 ∑ (−1)𝑚∞
𝑚=0 𝑎2𝑚𝑥2𝑚  

 is a polynomial of degree 𝑛 (i.e. there are a finite number of terms) but, 

 

𝑐1 ∑ (−1)𝑚∞
𝑚=0 𝑎2𝑚+1𝑥2𝑚+1  

is a nonterminating infinite series (it has an infinite number of nonzero  

terms). 
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If 𝛼 = 𝑛, a positive odd integer, then 𝑎2𝑚+1 = 0 when 2𝑚 + 1 > 𝑛. In this 

case: 

𝑐1 ∑ (−1)𝑚∞
𝑚=0 𝑎2𝑚+1𝑥2𝑚+1  

is a polynomial of degree 𝑛 and,  

 

𝑐0 ∑ (−1)𝑚∞
𝑚=0 𝑎2𝑚𝑥2𝑚  

is a nonterminating infinite series. 

 

So if 𝑛 is an integer, the 𝑛th degree polynomial solution of: 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0 

is denoted by 𝑃𝑛(𝑥) and is called the Legendre Polynomial of degree 𝑛. 


