Series Solutions near Ordinary Points- HW Problems

In problems 1-3 find a series solutions around 0 (ie in powers of x) for the differential equation using a recurrence relation. Find the guaranteed radius of convergence of the solution.

1.
$$y'' - xy' - y = 0$$

2.
$$(x^2 + 1)y'' - 4xy' + 6y = 0$$

3.
$$(x^2 - 3)y'' + 2xy' = 0$$

In problems 4-6 solve the initial value problems with a power series.

4.
$$(1 + x^2)y'' + 2xy' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$
5. $y'' + xy' - 2y = 0$, $y(0) = 0$, $y'(0) = 3$

6.
$$y'' + 2xy' + 2y = 0$$
, $y(0) = 6$, $y'(0) = 2$

7. Solve the initial value problem by first making a substitution t = x - a and then finding a series solution of the form $\sum_{n=0}^{\infty} c_n t^n$. Then transform the solution back to a power series in x - a.

$$y'' + (x - 1)y' + y = 0$$
, $y(1) = 3$, $y'(1) = -1$.