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Elementary Power Series Solutions 

 

A power series around 0 is of the form: 

∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 + ⋯  

A power series around 𝑎 is of the form: 

∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 = 𝑐0 + 𝑐1(𝑥 − 𝑎) + ⋯ + 𝑐𝑛(𝑥 − 𝑎)𝑛 + ⋯  

 

Ex.          𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0 = 1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+ ⋯

𝑥𝑛

𝑛!
+ ⋯ 

 cos 𝑥 = ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!
=∞

𝑛=0 1 −
𝑥2

2!
+

𝑥4

4!
+ ⋯ +

(−1)𝑛𝑥2𝑛

(2𝑛)!
+ ⋯ 

 sin 𝑥 = ∑
(−1)𝑛𝑥2𝑛+1

(2𝑛+1)!
=∞

𝑛=0 𝑥 −
𝑥3

3!
+

𝑥5

5!
+ ⋯ +

(−1)𝑛𝑥2𝑛+1

(2𝑛+1)!
+ ⋯  

   
1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0 = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 + ⋯  

   
1

1+𝑥
= ∑ (−1)𝑛𝑥𝑛∞

𝑛=0 = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ (−1)𝑛𝑥𝑛 + ⋯  

 

Notice that means: 

     𝑒2𝑥 = ∑
(2𝑥)𝑛

𝑛!
= 1 + 2𝑥 +∞

𝑛=0
(2𝑥)2

2!
+

(2𝑥)3

3!
+ ⋯  

cos 3𝑥 = ∑
(−1)𝑛(3𝑥)2𝑛

(2𝑛)!
=∞

𝑛=0 1 −
(3𝑥)2

2!
+

(3𝑥)4

4!
+ ⋯  

 

Def.  If the Taylor Series of 𝑓(𝑥) converges to 𝑓(𝑥) for some open interval 

containing 𝑥 = 𝑎, we say 𝑓 is analytic at 𝑥 = 𝑎. 
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Ex.     𝑓(𝑥) = 𝑒𝑥  is analytic everywhere.  

         𝑓(𝑥) =
1

1−𝑥
 is analytic everywhere except 𝑥 = 1.  

         All polynomials and rational functions whose denominators are not 0 are  

           analytic. 

 

 

Power Series Operations 

Power series operations are similar to those of polynomials. 

If 𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ,     𝑔(𝑥) = ∑ 𝑏𝑛𝑥𝑛∞

𝑛=0  

then, 

              𝑓(𝑥) ± 𝑔(𝑥) = ∑ (𝑎𝑛 ± 𝑏𝑛)𝑥𝑛∞
𝑛=0   

and  

𝑓(𝑥)𝑔(𝑥) = (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )(𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ ) 

        = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + (𝑎0𝑏2 + 𝑎1𝑏1 + 𝑎2𝑏0)𝑥2 + ⋯. 

 

Given a power series, ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 , we often want to know for what values of 𝑥 

the series converges. 
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Theorem: (Radius of Convergence) 

 Given a power series ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 , suppose that: 

                𝜌 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
|     ( 𝜌 is called the radius of convergence) 

 exists (𝜌 is finite) or is infinite: 

a) If 𝜌 = 0 then the series diverges for all 𝑥 ≠ 0 

b) If 0 < 𝜌 < ∞ then ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0  converges if |𝑥| < 𝜌 and diverges if 

|𝑥| > 𝜌 (if |𝑥| = 𝜌 you have to check convergence in some other way) 

c) If 𝜌 = ∞ then the series converges for all 𝑥. 

 

Ex.  Find the radius of convergence of the following: 

 

a) 
1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0 = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 + ⋯  

 

b) 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0 = 1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+ ⋯

𝑥𝑛

𝑛!
+ ⋯ 

      

a) 𝑐𝑛 = 1,   𝑐𝑛+1 = 1,    𝜌 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
| = lim

𝑛→∞
|

1

1
| = 1  

So for all 𝑥, |𝑥| < 1,  i.e. −1 < 𝑥 < 1,   ∑ 𝑥𝑛∞
𝑛=0  converges. 

For example, if 𝑥 =
2

3
 then 

1

1−
2

3

 = ∑ (
2

3
)𝑛∞

𝑛=0 = 1 +
2

3
+ (

2

3
)

2
+ (

2

3
)

3
+ ⋯ + (

2

3
)

𝑛
+ ⋯     converges.   

 

 

 

 

 

 

If 𝑥 =
3

2
 then 

∑ (
3

2
)𝑛∞

𝑛=0 = 1 +
3

2
+ (

3

2
)

2
+ ⋯ (

3

2
)

𝑛
+ ⋯         diverges.    
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b) 𝑐𝑛 =
1

𝑛!
 , 𝑐𝑛+1 =

1

(𝑛+1)!
  so we have       

𝜌 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
| = lim

𝑛→∞
|

1
𝑛!
1

(𝑛+1)!

| = lim
𝑛→∞

(𝑛+1)!

𝑛!
= lim

𝑛→∞
(𝑛 + 1) = ∞.  

So the radius of convergence is ∞. Thus, the series will converge for any 

𝑥. For example at 𝑥 = 100, 

 

𝑒100 = 1 + 100 +
(100)2

2!
+

(100)3

3!
+ ⋯

(100)𝑛

𝑛!
+ ⋯ . 

 

 

Ex.  Find the radius of convergence of ∑
2𝑛

𝑛2 𝑥𝑛∞
𝑛=0 . 

 

          𝜌 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
| = lim

𝑛→∞
|

2𝑛

𝑛2

2𝑛+1

(𝑛+1)2

|  

               = lim
𝑛→∞

|
2𝑛

𝑛2 ∙
(𝑛+1)2

2𝑛+1 | = lim
𝑛→∞

|
1

2
(

𝑛+1

𝑛
)2| =

1

2
 .  

       The radius of convergence is 
1

2
 , so the power series converges if |𝑥| <

1

2
 . 

 

 

Theorem: If 𝑓(𝑥) = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ + 𝑐𝑛𝑥𝑛 +… 

  converges on an open interval, 𝐼, then 𝑓 is differentiable on 𝐼 and 

𝑓′(𝑥) = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 = 𝑐1 + 2𝑐2𝑥 + 3𝑐3𝑥2 + ⋯ + 𝑛𝑐𝑛𝑥𝑛−1 + ⋯  

 at each point of 𝐼. 
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Ex.  𝑓(𝑥) =
1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0 = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 + ⋯  

       converges when |𝑥| < 1.  Thus:  

 

𝑓′(𝑥) =
1

(1−𝑥)2 = ∑ 𝑛𝑥𝑛−1∞
𝑛=1 = 1 + 2𝑥 + 3𝑥2 + ⋯ + 𝑛𝑥𝑛−1 + ⋯  

     when |𝑥| < 1. 

 

Theorem: If  ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = ∑ 𝑏𝑛𝑥𝑛∞

𝑛=0  for every point 𝑥 in some open  

       interval then 𝑎𝑛 = 𝑏𝑛 for all 𝑛 ≥ 0.  

 

Some differential equations can be solved by assuming that 𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 ,  

𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 ,  etc., plugging into the differential equation and equating 

the coefficients. 

 

Ex.  Solve the equation 𝑦′ + 3𝑦 = 0.  

 

 Let 𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0  and 𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1 . 

 Now substitute in 𝑦′ + 3𝑦 = 0: 

∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 + 3 ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0 = 0.   

 

 Notice that we can "line up" the coefficients of the same power of 𝑥:  

∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 = 𝑐1 + 2𝑐2𝑥 + 3𝑐3𝑥2 + ⋯ = ∑ (𝑛 + 1)𝑐𝑛+1𝑥𝑛∞

𝑛=0   

 

So         ∑ (𝑛 + 1)𝑐𝑛+1𝑥𝑛∞
𝑛=0 + 3 ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0 = 0  

                         Or                      ∑ [(𝑛 + 1)𝑐𝑛+1 + 3𝑐𝑛]𝑥𝑛∞
𝑛=0 = 0.     
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That means every coefficient of 𝑥𝑛 must be 0. 

                     thus     (𝑛 + 1)𝑐𝑛+1 + 3𝑐𝑛 = 0 for all 𝑛 ≥ 0 

(𝑛 + 1)𝑐𝑛+1 = −3𝑐𝑛 

                       𝑐𝑛+1 = −
3𝑐𝑛

𝑛 + 1
 . 

 This is called a recurrence relation and tells us how the next coefficient,  

          𝑐𝑛+1, relates to 𝑐𝑛. 

                     𝑛 = 0                                                               𝑐1 =
−3𝑐0

1
  

                     𝑛 = 1                        𝑐2 =
−3𝑐1

2
= −

3

2
(−3𝑐0) =

32𝑐0

2
   

                     𝑛 = 2                          𝑐3 =
−3𝑐2

3
= −

3

3
(

32𝑐0

2
) = −

33𝑐0

3(2)
   

                     𝑛 = 3                                                   𝑐4 =
−3𝑐3

4
=

34

4!
𝑐0    

 

 Based on this pattern we can say 𝑐𝑛 =
(−1)𝑛3𝑛

𝑛!
𝑐0 and,  

 

𝑦(𝑥) = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 = ∑

(−1)𝑛3𝑛

𝑛!
𝑐0𝑥𝑛∞

𝑛=0 = 𝑐0 ∑
(−3𝑥)𝑛

𝑛!
∞
𝑛=0 = 𝑐0𝑒(−3𝑥) .    
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Ex.   Solve (𝑥 + 2)𝑦′ + 2𝑦 = 0, where 𝑦(0) = 3. Find the radius of  

        convergence of the solution. 

 

                  Let:     𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 ;        𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1    

 

            (𝑥 + 2) ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 + 2 ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0 = 0  

 

∑ 𝑛𝑐𝑛𝑥𝑛∞
𝑛=1 + ∑ 2𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1 + ∑ 2𝑐𝑛𝑥𝑛∞
𝑛=0 = 0.  

 

Notice that the powers of 𝑥 of the middle power series aren't "lined up" with the 

other 2 power series.  So we can do the following: 

∑ 2𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 = 2𝑐1 + 4𝑐2𝑥 + 6𝑐3𝑥2 + ⋯ + 2(𝑛 + 1)𝑐𝑛+1𝑥𝑛 + ⋯  

                                     = ∑ 2(𝑛 + 1)𝑐𝑛+1𝑥𝑛.∞
𝑛=0     

 

Now substitute this into the middle power series:   

         ∑ 𝑛𝑐𝑛𝑥𝑛∞
𝑛=1 + ∑ 2(𝑛 + 1)𝑐𝑛+1𝑥𝑛∞

𝑛=0 + ∑ 2𝑐𝑛𝑥𝑛∞
𝑛=0 = 0  

 

                                     ∑ [𝑛𝑐𝑛 + 2(𝑛 + 1)𝑐𝑛+1 + 2𝑐𝑛]𝑥𝑛 = 0∞
𝑛=0    

 

                                    𝑛𝑐𝑛 + 2(𝑛 + 1)𝑐𝑛+1 + 2𝑐𝑛 = 0 

 

2(𝑛 + 1)𝑐𝑛+1 = −𝑛𝑐𝑛 − 2𝑐𝑛 = −(𝑛 + 2)𝑐𝑛 

 



8 
 

 𝑐𝑛+1 = −
(𝑛+2)𝑐𝑛

2(𝑛+1)
  for 𝑛 ≥ 0    (recurrence relation). 

                   𝑛 = 0                                                𝑐1 = −
2𝑐0

2
= −𝑐0 

  𝑛 = 1                                              𝑐2 =
−(3)

2(2)
𝑐1 =

3

2(2)
𝑐0   

                    𝑛 = 2                        𝑐3 =
−(4)

2(3)
𝑐2 =

−(4)(3)

23(3)
𝑐0 =

−4

23 𝑐0   

    𝑛 = 3                           𝑐4 =
−(5)

2(4)
𝑐3 =

(5)(4)

24(4)
𝑐0 =

5

24 𝑐0    

 

 Based on this pattern we can say: 

𝑐𝑛 =
(−1)𝑛(𝑛 + 1)

2𝑛
𝑐0. 

 

 

                  𝑦(𝑥) = ∑
(−1)𝑛(𝑛+1)

2𝑛 𝑐0𝑥𝑛∞
𝑛=0   

                  𝑦(𝑥) = 𝑐0 ∑
(−1)𝑛(𝑛+1)

2𝑛 𝑥𝑛∞
𝑛=0           general solution. 

 

  

3 = 𝑦(0) = 𝑐0(1 − 0 + ⋯ ), so 𝑐0 = 3. 

                   𝑦(𝑥) = 3 ∑
(−1)𝑛(𝑛+1)

2𝑛 𝑥𝑛∞
𝑛=0            particular solution. 
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   𝜌 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
| = lim

𝑛→∞
|

(−1)𝑛(𝑛+1)

2𝑛 ∙3

(−1)𝑛+1(𝑛+2)

2𝑛+1 ∙3
|     

       = lim
𝑛→∞

|
(𝑛+1)

2𝑛 ∙
2𝑛+1

(𝑛+2)
| = 2.   

 

So the radius of convergence of the solution is 2.  

The series converges for −2 < 𝑥 < 2.  

The series diverges for 𝑥 > 2 or 𝑥 < −2. 

The series diverges for 𝑥 = ±2 since the 𝑛th term of  

3 ∑
(−1)𝑛(𝑛 + 1)

2𝑛
(±2)𝑛

∞

𝑛=0

 

           doesn't go to 0 as 𝑛 goes to ∞. 
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Ex.  Solve 𝑥2𝑦′ = 𝑦 + 1 − 𝑥.  Find the radius of convergence for the solution. 

 

                   Let      𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 ;         𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1   

 

                 𝑥2 ∑ 𝑛𝑐𝑛𝑥𝑛−1∞
𝑛=1 = 1 − 𝑥 + ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0   

                       ∑ 𝑛𝑐𝑛𝑥𝑛+1∞
𝑛=1 = 1 − 𝑥 + ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0   

             ∑ 𝑛𝑐𝑛𝑥𝑛+1∞
𝑛=1 = (𝑐0 + 1) + (𝑐1 − 1)𝑥 + ∑ 𝑐𝑛𝑥𝑛∞

𝑛=2 .  

To "line up" the powers of 𝑥 notice: 

 ∑ 𝑛𝑐𝑛𝑥𝑛+1∞
𝑛=1 = 𝑐1𝑥2 + 2𝑐2𝑥3 + 3𝑐3𝑥4 + 4𝑐4𝑥5 + ⋯ 

                              = ∑ (𝑛 − 1)𝑐𝑛−1𝑥𝑛∞
𝑛=2  

                                 = (𝑐0 + 1) + (𝑐1 − 1)𝑥 + ∑ 𝑐𝑛𝑥𝑛∞
𝑛=2    

 

Notice the LHS doesn’t have a constant term or a linear term so: 

                                               𝑐0 = −1 ;     

                                               𝑐1 = 1 ;     

                                               𝑐𝑛 = (𝑛 − 1)𝑐𝑛−1 for  𝑛 ≥ 2 

                                               𝑐2 = 1𝑐1 = 1 

                                               𝑐3 = 2𝑐2 = 2(1) 

                                               𝑐4 = 3𝑐3 = 3(2)1 

                                    ⟹     𝑐𝑛 = (𝑛 − 1)!    for 𝑛 ≥ 2.  

 

                                    ⟹   𝑦(𝑥) = −1 + 𝑥 + ∑ (𝑛 − 1)! 𝑥𝑛.∞
𝑛=2    

𝜌 = lim
𝑛→∞

|
𝑐𝑛

𝑐𝑛+1
| = lim

𝑛→∞
|

(𝑛−1)!

𝑛!
| = lim

𝑛→∞
|

1

𝑛
| = 0.   

 

 So the series only converges for 𝑥 = 0. 
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Ex.  Solve 𝑦′′ + 𝑦 = 0, where 𝑦(0) = 4, 𝑦′(0) = 6. 

 

𝑦 = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0 ;     𝑦′ = ∑ 𝑛𝑐𝑛𝑥𝑛−1∞

𝑛=1 ;     𝑦′′ = ∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2 .  

 

∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2 + ∑ 𝑐𝑛𝑥𝑛∞

𝑛=0 = 0  

 

     To "line up" the powers of 𝑥 we can use: 

∑ 𝑛(𝑛 − 1)𝑐𝑛𝑥𝑛−2∞
𝑛=2 = 2𝑐2 + 6𝑐3𝑥 + 12𝑐4𝑥2 + ⋯  

                                                           = ∑ (𝑛 + 1)(𝑛 + 2)𝑐𝑛+2𝑥𝑛∞
𝑛=0  

 

                     ∑ (𝑛 + 1)(𝑛 + 2)𝑐𝑛+2𝑥𝑛∞
𝑛=0 + ∑ 𝑐𝑛𝑥𝑛 = 0∞

𝑛=0     

                                 ∑ [(𝑛 + 1)(𝑛 + 2)𝑐𝑛+2 + 𝑐𝑛]𝑥𝑛∞
𝑛=0 = 0  

                                                  (𝑛 + 1)(𝑛 + 2)𝑐𝑛+2 + 𝑐𝑛 = 0   for all 𝑛 ≥ 0 

                                      ⟹   𝑐𝑛+2 =
−𝑐𝑛

(𝑛+2)(𝑛+1)
 .    

 

 Applying the recurrence relationship when 𝑛 = 0, 2, 4, 6, … 

 

                   𝑛 = 0                                                      𝑐2 =
−𝑐0

(2)(1)
   

𝑛 = 2                                        𝑐4 =
−𝑐2

(4)(3)
=

(−1)2𝑐0

(4)(3)(2)(1)
   

                  𝑛 = 4                                        𝑐6 =
−𝑐4

(6)(5)
=

(−1)3𝑐0

6!
   

 ⟹     𝑐2𝑛 =
(−1)𝑛𝑐0

(2𝑛)!
 . 
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 Taking 𝑛 = 1, 3, 5, 7, … 

                         𝑛 = 1                                                𝑐3 =
−𝑐1

(3)(2)
 

𝑛 = 3                                  𝑐5 =
−𝑐3

(5)(4)
=

(−1)2𝑐1

5!
  

𝑛 = 5                                  𝑐7 =
−𝑐5

(7)(6)
=

(−1)3𝑐1

7!
  

⟹      𝑐2𝑛+1 =
(−1)𝑛𝑐1

(2𝑛+1)!
  

 

𝑦(𝑥) = 𝑐0 (1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ ) + 𝑐1(𝑥 −

𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ )   

 

        𝑦(𝑥) = 𝑐0(cos 𝑥) + 𝑐1(sin 𝑥) 

 

        𝑦′(𝑥) = −𝑐0 sin 𝑥 + 𝑐1 cos 𝑥 

 

                  4 = 𝑦(0) = 𝑐0 

                  6 = 𝑦′(0) = 𝑐1     so 𝑐1 = 6.  

 

𝑦(𝑥) = 4 cos 𝑥 + 6 sin 𝑥. 

 

 


