Forced Oscillations and Resonance

In the section on Vibrating Springs we considered a mass, m, attached to a
spring on one end and a dashpot (like a shock absorber) on the other.

[

If x(t) is the position of the mass at time t, we were led to the differential
equation:

mx" + cx' + kx = F(t),

where, k, is the spring constant, c, is the constant coming from the force of the
dashpot, and F (t) is an external force.

In the section Vibrating Springs we only considered the situation where F(t) = 0.
In that case we say the motion is “free”. If F(t) # 0 we say the motion is “forced”.

In this section we will consider the situation where the motion is forced and the
external force, F(t), is a simple harmonic function given by F(t) = F, cos(wt)
(we could also have used F(t) = F, sin(wt)).

Undamped Forced Oscillations

Recall that in the absence of a dashpot (i.e., c = 0), we called the motion
“undamped”. In the section on Vibrating Springs this led us to solving the
differential equation:

mx'" + kx = 0.
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In this section we will consider a system with a spring, no dashpot (so the motion is
“undamped”) and an external force of the form F(t) = F, cos(wt). Thus we need
to solve:

mx' + kx = F, cos(wt).

To solve this non-homogeneous differential equation, we need to first solve the
homogenous equation:

mx'" + kx = 0.

Recall that when we solved this equation earlier, we let w, = \/%, so our

equation became:
17 20 —
x"+wyx =0
whose general solution is:

x(t) = Acos(wyt) + Bsin(wyt).

We then found that we could write the general solutions as:

x(t) = Ccos(wot —a), whereC =+VA? + B?, tan(a) =

So when solving:
mx' + kx = F, cos(wt)
We start with the general solution to the homogenous equation:
mx" + kx =0 or x"+wéx=0,

which is x.(t) = Ccos(wyt — @) (Note: in general W # wy).

We now need to find a particular solution, x,,, and the general solution is
x(t) = x.(t) + x,(t).



Since F(t) = F, cos(wt), In general, we might expect the particular solution to
have the form:

x, = Ecos(wt) + Fsin(wt).

However, in the case where ¢ = 0 (ie the undamped case), F will always turn out
to be 0, so we can try:

x, = Ecos(wt)
xp = —Ewsin(wt)

x;, = —Ew? cos(wt).

Plugging intomx'" + kx = F, cos(wt), we get:
—mE? w?cos(wt) + kEcos(wt) = F, cos(wt)

Ecos(wt)[-mw? + k] = F, cos(wt)

E = Fp Fy
k—mw?2 m(ﬁ_wz)'
m

. k k .
Sincewy = |—, wZ = —, so the expression for E becomes:
0 m 0 m

Fo
b= m(wi-w2)’
0
Notice at w = wy, E is undefined.

So the general solution becomes:

_ _ Fy
x(t) = Ccos(wot — a) + m(w(z)—wz) cos(wt).



Notice that as w goes to w, , the amplitude of the oscillations of an undamped
system increases without bound. This is called resonance.
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Ex.Givenm ==,c =0,k =4,w =4, F;, =40, x(0) = 2,and x'(0) = 0, solve

mx" + cx" + kx = F, cos(wt).

In this case the differential equation becomes:

%x” + 4x = 40cos(4t) or x"" + 8x = 80cos(4t).

From an example we did in the section on Vibrating Springs, we know the general
solutions to x"' + 8x = 0 is:

x(t) = ACos(Z\/Et) + Bsin(Z\/Et).

Thus for x'" + 8x = 80 cos(4t) we have:

x.(t) = ACos(Zx/?t) + Bsin(Z\/Et).

To find a particular solution, since c = 0 we can try:
x, = E cos(4t)
x, = —4E sin(4t)
x, = —16E cos(4t).

Plugging into x' + 8x = 80 cos(4t) we get:
—16Ecos(4t) + 8Ecos(4t) = 80 cos(4t)
—8Ecos(4t) = 80 cos(4t) = E =-10.



Thus, the general solution to x"' + 8x = 80 cos(4t) is:

x(t) = ACOS(Z\/Et) + Bsin(Z\/it) — 10 cos(4t).

The initial conditions are: x(0) =2, x'(0) = 0.

2=x(0)=4-10 = A=12.

x'(t) = —ZﬁAsin(Z\/ft) + 2v/2B cos(Z\/ft) + 40 sin(4t)
0=x'(0)=2v2B = B=0.

x(t) =12 cos(Z\/ft) — 10 cos(4t).

Damped Forced Oscillations

In the case of damped forced oscillations we need to solve:

mx' + cx' + kx = F, cos(wt).

As usual, we start by solving the homogenous equation:

mx" +cx' +kx = 0.



As we saw in the section on Vibrating Springs there are 3 cases:

1. Overdamped case: c? —4km > 0, 2 real roots r;, 15, both negative;
x(t) = Ae™! + Be™2t,

2. Critically damped case: c? — 4km = 0, 1,7, 2 equal negative roots;
x(t) = e" (4 + Bt).

3. Underdamped case: ¢? —4km <0, r=a+bi, a<0;
x(t) = e (¢, cos(bt) + ¢, sin(bt)).

Notice in each case tlim x(t) = 0 so for the case when:
—>00

mx'" + cx" + kx = F, cos(wt)
and x(t) = x.(t) + x,(t), we have tlim x.(t) = 0.

Thus lim x(t) = lim x,,(t), thatis, the general solution approaches the

t—>oo t—> oo
particular solution.

Ex. Suppose m = %, c=3, k=4, w=4, F; =40, x(0) =2, and x"(0) = 0.
Solve: %x” +3x"+4x =40cos(4t) or x""+6x"+ 8x = 80 cos(4t).

From an example in “Vibrating Springs” we know the solutions to:
x"+6x"+8x=0

are given by: x(t) = Ae™?t + Be™*t.



Now let’s find a particular solution.
Since ¢ # 0, we need to try:

xp = E cos(4t) + Fsin(4t)
xp = —4Esin(4t) + 4Fcos(4t)
x, = —16Ecos(4t) — 16Fsin(4t).

Substituting into x"" + 6x" + 8x = 80 cos(4t), we get:

—16Ecos(4t) — 16Fsin(4t) — 24Esin(4t) + 24Fcos(4t)
+8Ecos(4t) + 8Fsin(4t) = 80 cos(4t).

(—16E + 24F + 8E) cos(4t)
+(—16F — 24E + 8F) sin(4t) = 80 cos(4t).

—8E + 24F = 80
—24E —-8F =0 = F =-3E.

—8E —-72E=80 = E=-1, F=3.

So x, = —cos(4t) + 3 sin(4t).

Thus the general solution is:

x(t) = Ae %' + Be™*t — cos(4t) + 3 sin(4t).

To solve for A and B we use: x(0) =2 and x'(0) = 0.

x'(t) = —24e~ %t — 4Be~* + 4 sin(4t) + 12 cos(4t), so we have:

2=x(0)=A+B—-1 = A+B=3
0=x'(0)=-24—4B+12 = A+2B=6.



Solving these simultaneous equations we get:

B=3 A=0.

Thus the solution is:

x(t) = 3e™t — cos(4t) + 3 sin(4t).

Ex. Solvemx' + cx' + kx = F, cos(wt) where:

a m=1 ¢=0, k=125 w=5, F, =50, x(0) = 6,and v(0) = 50.
b. m=1, c=10, k=125, w=15, F, =50, x(0) = 6,and v(0) = 50

a. We need to solve: x'" + 125x = 50cos(5t), x(0) =6, x'(0) = 50.

From an example in “Vibrating Springs” we know the solutions of:

x""+125x =0

are given by: x(t) = ACOS(S\/gt) + Bsin(S\/gt).

Since ¢ = 0, to find a particular solution we try:

x, = Ecos(5t)

xp = —5Esin(5t)

x, = —25Ecos(5t).



Plugging into x'' + 125x = 50 cos(5t) we get:
—25Ecos(5t) + 125Ecos(5t) = 50 cos(5t)
100 Ecos(5t) = 50 cos(5t) >E=-.

Thus X, = %cos(St).

So the general solution to x"' + 125x = 50 cos(5t) is:

x(t) = Acos(S\/Et) + Bsin(S\/Et) + %cos(St).

To solve for A and B, weuse:  x(0) = 6, x'(0) = 50.

x'(t) = —5\/§Asin(5\/§t) + 5\/§Bcos(5\/§t) — ;sin (5t)

So we have:

6=x(0)=A+- > A==
Y _ 10

50 = x'(0) = 5V5B = B=_.

Thus the solution to x"" + 125x = 50 cos(5t), x(0) =6, x'(0) = 50/s:

x(t) = %cos(Sx/gt) + %Sin(S\/gt) + %cos(St).



b.

We need to solve:
x" +10x" + 125x = 50 cos(5t), x(0) =6, x'(0) = 50.

From an earlier example in Vibrating Springs we know the general solution
tox"" + 10x" + 125x = 0 is given by:

x(t) = e > (Acos(10t) + B sin(10t)).
Since ¢ # 0, the particular solution to x'' + 10x" + 125x = 50 cos(5t)
is of the form:

xp = Ecos(5t) + Fsin(5t)

xp = —5Esin(5t) + 5Fcos(5t)
x, = —25Ecos(5t) — 25Fsin(5t).

Plugging into x'" + 10x" 4+ 125x = 50 cos(5t) we get:

—25Ecos(5t) — 25Fsin(5t) + 10(—5Esin(5t) + 5Fcos(5t))
+125(Ecos(5t) + Fsin(St)) = 50 cos(5t).

(—25E + 50F + 125E)cos(5t)
+ (—25F — 50E + 125F) sin(5t) = 50 cos(5t).

100E + 50F =50
—50E + 100F =0 = E = 2F.

200F + 50F =50 = F=§,E=

S0 x, = %cos(St) + %sin (5¢t).



So the general solution to x'' + 10x" + 125x = 50 cos(5t) is:
x(t) = e >*(Acos(10t) + B sin(10t)) + %cos(St) + %sin (5¢).

To find A and B we use: x(0) =6, x'(0) =50.

x'(t) =

e~ 5¢(—104sin(10t) + 10Bcos(10t))
— 5e7%(Acos(10t) + B sin(10t)) — 2 sin(5t) + cos(5t).

6=x(0)=A+§ = A=§.
50 = x'(0) = 10B — 54 + 1
28
50_103—5(?)+1
50 = 108 — 27
77 = 10B -~ B=2
10

Thus the solutions is:

x(t) = et (2—58 cos(10t) + Z—; Sin(lot)> + %cos(St) + %sin (5¢t).



