
                                      Forced Oscillations and Resonance 

 

     In the section on Vibrating Springs we considered a mass, 𝑚, attached to a 
spring on one end and a dashpot (like a shock absorber) on the other. 

                          

If 𝑥(𝑡) is the position of the mass at time 𝑡, we were led to the differential 

equation: 

                               𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹(𝑡),     

where, 𝑘, is the spring constant, 𝑐, is the constant coming from the force of the 

dashpot, and 𝐹(𝑡) is an external force. 

 

In the section Vibrating Springs we only considered the situation where 𝐹(𝑡) = 0.  

In that case we say the motion is “free”.  If 𝐹(𝑡) ≠ 0 we say the motion is “forced”. 

In this section we will consider the situation where the motion is forced and the 

external force, 𝐹(𝑡), is a simple harmonic function given by 𝐹(𝑡) = 𝐹0 cos(𝑤𝑡)    

(we could also have used 𝐹(𝑡) = 𝐹0 sin(𝑤𝑡)). 

 

Undamped Forced Oscillations 

Recall that in the absence of a dashpot (i.e., 𝑐 = 0), we called the motion 

“undamped”.  In the section on Vibrating Springs this led us to solving the 

differential equation: 

                                           𝑚𝑥′′ + 𝑘𝑥 = 0. 
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In this section we will consider a system with a spring, no dashpot (so the motion is 

“undamped”) and an external force of the form 𝐹(𝑡) = 𝐹0 cos(𝑤𝑡).  Thus we need 

to solve: 

                                      𝑚𝑥′′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡). 

To solve this non-homogeneous differential equation, we need to first solve the 

homogenous equation: 

                                         𝑚𝑥′′ + 𝑘𝑥 = 0. 

Recall that when we solved this equation earlier, we let  𝑤0 = √
𝑘

𝑚
 , so our 

equation became: 

                                               𝑥′′ + 𝑤0
2𝑥 = 0 

whose general solution is: 

                              𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝑤0𝑡) + 𝐵𝑠𝑖𝑛(𝑤0𝑡).  

 

We then found that we could write the general solutions as: 

      𝑥(𝑡) = 𝐶𝑐𝑜𝑠(𝑤0𝑡 − 𝛼),      where 𝐶 = √𝐴2 + 𝐵2,  tan(𝛼) =
𝐵

𝐴
 . 

 

So when solving: 

                               𝑚𝑥′′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡)     

We start with the general solution to the homogenous equation: 

                𝑚𝑥′′ + 𝑘𝑥 = 0         or         𝑥′′ + 𝑤0
2𝑥 = 0,    

which is  𝑥𝑐(𝑡) = 𝐶𝑐𝑜𝑠(𝑤0𝑡 − 𝛼)        (Note: in general 𝑤 ≠ 𝑤0).     

 

We now need to find a particular solution, 𝑥𝑝, and the general solution is 

      𝑥(𝑡) = 𝑥𝑐(𝑡) + 𝑥𝑝(𝑡). 



Since 𝐹(𝑡) = 𝐹0 cos(𝑤𝑡), In general, we might expect the particular solution to 

have the form: 

𝑥𝑝 = 𝐸𝑐𝑜𝑠(𝑤𝑡) + 𝐹𝑠𝑖𝑛(𝑤𝑡). 

However, in the case where 𝑐 = 0 (ie the undamped case), 𝐹 will always turn out 

to be 0, so we can try: 

                                               𝑥𝑝 = 𝐸𝑐𝑜𝑠(𝑤𝑡) 

                                          𝑥𝑝
′ = −𝐸𝑤𝑠𝑖𝑛(𝑤𝑡) 

                                          𝑥𝑝
′′ = −𝐸𝑤2 cos(𝑤𝑡). 

 

Plugging into 𝑚𝑥′′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡), we get: 

      −𝑚𝐸2 w2cos(𝑤𝑡) + 𝑘𝐸𝑐𝑜𝑠(𝑤𝑡) = 𝐹0 cos(𝑤𝑡)     

                        𝐸𝑐𝑜𝑠(𝑤𝑡)[−𝑚𝑤2 + 𝑘] = 𝐹0 cos(𝑤𝑡) 

                                                               𝐸 =
𝐹0

𝑘−𝑚𝑤2 =
𝐹0

𝑚(
𝑘

𝑚
−𝑤2)

. 

 

Since 𝑤0 = √
𝑘

𝑚
 ,  𝑤0

2 =
𝑘

𝑚
, so the expression for 𝐸 becomes: 

                                                                          𝐸 =
𝐹0

𝑚(𝑤0
2−𝑤2)

 . 

Notice at 𝑤 = 𝑤0, 𝐸 is undefined. 

 

So the general solution becomes: 

                         𝑥(𝑡) = 𝐶𝑐𝑜𝑠(𝑤0𝑡 − 𝛼) +
𝐹0

𝑚(𝑤0
2−𝑤2)

cos(𝑤𝑡).         

 



Notice that as 𝑤 goes to 𝑤0 , the amplitude of the oscillations of an undamped 

system increases without bound.  This is called resonance. 

 

Ex. Given 𝑚 =
1

2
 , 𝑐 = 0, 𝑘 = 4, 𝑤 = 4, 𝐹0 = 40, 𝑥(0) = 2, and 𝑥′(0) = 0, solve 

                                       𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡). 

 

In this case the differential equation becomes: 

              
1

2
𝑥′′ + 4𝑥 = 40 cos(4𝑡)       or       𝑥′′ + 8𝑥 = 80 cos(4𝑡). 

 

From an example we did in the section on Vibrating Springs, we know the general 

solutions to 𝑥′′ + 8𝑥 = 0 is: 

                           𝑥(𝑡) = 𝐴𝐶𝑜𝑠(2√2𝑡) + 𝐵𝑠𝑖𝑛(2√2𝑡). 

 

Thus for 𝑥′′ + 8𝑥 = 80 cos(4𝑡) we have: 

                          𝑥𝑐(𝑡) = 𝐴𝐶𝑜𝑠(2√2𝑡) + 𝐵𝑠𝑖𝑛(2√2𝑡). 

 

To find a particular solution, since 𝑐 = 0 we can try: 

                          𝑥𝑝 = 𝐸 cos(4𝑡) 

                          𝑥𝑝
′ = −4𝐸 sin(4𝑡) 

                          𝑥𝑝
′′ = −16𝐸 cos(4𝑡). 

 

Plugging into  𝑥′′ + 8𝑥 = 80 cos(4𝑡) we get: 

            −16𝐸𝑐𝑜𝑠(4𝑡) + 8𝐸𝑐𝑜𝑠(4𝑡) = 80 cos(4𝑡)    

                                         −8𝐸𝑐𝑜𝑠(4𝑡) = 80 cos(4𝑡)        ⇒    𝐸 = −10. 



Thus, the general solution to 𝑥′′ + 8𝑥 = 80 cos(4𝑡) is: 

                    𝑥(𝑡) = 𝐴𝐶𝑜𝑠(2√2𝑡) + 𝐵𝑠𝑖𝑛(2√2𝑡) − 10 cos(4𝑡). 

 

The initial conditions are:  𝑥(0) = 2,    𝑥′(0) = 0. 

                     2 = 𝑥(0) = 𝐴 − 10      ⇒       𝐴 = 12. 

 

            𝑥′(𝑡) = −2√2 Asin(2√2𝑡) + 2√2𝐵 cos(2√2𝑡) + 40 sin(4𝑡) 

   0 = 𝑥′(0) = 2√2𝐵      ⇒      𝐵 = 0. 

 

𝑥(𝑡) = 12 cos(2√2𝑡) − 10 cos(4𝑡). 

 

 

 

Damped Forced Oscillations 

In the case of damped forced oscillations we need to solve: 

                      𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡). 

 

 

As usual, we start by solving the homogenous equation: 

                        𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 0. 

 

 

 



As we saw in the section on Vibrating Springs there are 3 cases:  

 

1. Overdamped case:   𝑐2 − 4𝑘𝑚 > 0,  2 real roots 𝑟1, 𝑟2, both negative; 

                    𝑥(𝑡) = 𝐴𝑒𝑟1𝑡 + 𝐵𝑒𝑟2𝑡. 
 

2. Critically damped case: 𝑐2 − 4𝑘𝑚 = 0,    𝑟1, 𝑟2,  2 equal negative roots; 

                    𝑥(𝑡) = 𝑒𝑟𝑡(𝐴 + 𝐵𝑡). 

 
3. Underdamped case:  𝑐2 − 4𝑘𝑚 < 0,     𝑟 = 𝑎 ± 𝑏𝑖, 𝑎 < 0; 

                   𝑥(𝑡) = 𝑒𝑎𝑡(𝑐1 cos(𝑏𝑡) + 𝑐2 sin(𝑏𝑡)). 

 
 

Notice in each case lim
𝑡→∞

𝑥(𝑡) = 0 so for the case when: 

                                  𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡) 

 

and 𝑥(𝑡) = 𝑥𝑐(𝑡) + 𝑥𝑝(𝑡),  we have lim
𝑡→∞

𝑥𝑐(𝑡) = 0. 

Thus lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

𝑥𝑝(𝑡),  that is, the general solution approaches the 

particular solution. 

 

 

Ex. Suppose 𝑚 =
1

2
, 𝑐 = 3, 𝑘 = 4, 𝑤 = 4, 𝐹0 = 40, 𝑥(0) = 2,  and 𝑥′(0) = 0.       

Solve:      
1

2
𝑥′′ + 3𝑥′ + 4𝑥 = 40 cos(4𝑡)       or       𝑥′′ + 6𝑥′ + 8𝑥 = 80 cos(4𝑡). 

 

 

From an example in “Vibrating Springs” we know the solutions to: 

                              

                                     𝑥′′ + 6𝑥′ + 8𝑥 = 0 

 

are given by:              𝑥(𝑡) = 𝐴𝑒−2𝑡 + 𝐵𝑒−4𝑡. 

 

 



Now let’s find a particular solution. 

Since 𝑐 ≠ 0, we need to try: 

                                    𝑥𝑝 = 𝐸 cos(4𝑡) + 𝐹𝑠𝑖𝑛(4𝑡) 

                                𝑥𝑝
′ = −4𝐸𝑠𝑖𝑛(4𝑡) + 4𝐹𝑐𝑜𝑠(4𝑡) 

                                𝑥𝑝
′′ = −16𝐸𝑐𝑜𝑠(4𝑡) − 16𝐹𝑠𝑖𝑛(4𝑡). 

 
Substituting into 𝑥′′ + 6𝑥′ + 8𝑥 = 80 cos(4𝑡), we get: 

 

    −16𝐸𝑐𝑜𝑠(4𝑡) − 16𝐹𝑠𝑖𝑛(4𝑡) − 24𝐸𝑠𝑖𝑛(4𝑡) + 24𝐹𝑐𝑜𝑠(4𝑡) 

                                                       +8𝐸𝑐𝑜𝑠(4𝑡) + 8𝐹𝑠𝑖𝑛(4𝑡) = 80 cos(4𝑡). 

 

   (−16𝐸 + 24𝐹 + 8𝐸) cos(4𝑡) 

                                              +(−16𝐹 − 24𝐸 + 8𝐹) sin(4𝑡) = 80 cos(4𝑡). 

 

−8𝐸 + 24𝐹 = 80  

−24𝐸 − 8𝐹 = 0      ⇒    𝐹 = −3𝐸. 

 

−8𝐸 − 72𝐸 = 80    ⇒    𝐸 = −1,    𝐹 = 3. 

 

So 𝑥𝑝 = − cos(4𝑡) + 3 sin(4𝑡). 

 
Thus the general solution is: 

 

𝑥(𝑡) = 𝐴𝑒−2𝑡 + 𝐵𝑒−4𝑡 − cos(4𝑡) + 3 sin(4𝑡). 

 

To solve for 𝐴 and 𝐵 we use:   𝑥(0) = 2   and   𝑥′(0) = 0. 

 

𝑥′(𝑡) = −2𝐴𝑒−2𝑡 − 4𝐵𝑒−4𝑡 + 4 sin(4𝑡) + 12 cos(4𝑡),    so we have: 

 

2 = 𝑥(0) = 𝐴 + 𝐵 − 1                     ⇒           𝐴 + 𝐵 = 3 

0 = 𝑥′(0) = −2𝐴 − 4𝐵 + 12         ⇒         𝐴 + 2𝐵 = 6. 



Solving these simultaneous equations we get:      𝐵 = 3,   𝐴 = 0. 

 
Thus the solution is: 

 

𝑥(𝑡) = 3𝑒−4𝑡 − cos(4𝑡) + 3 sin(4𝑡). 

 

 

 

Ex.  Solve 𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹0 cos(𝑤𝑡) where: 

a. 𝑚 = 1, 𝑐 = 0, 𝑘 = 125, 𝑤 = 5, 𝐹0 = 50, 𝑥(0) = 6, and 𝑣(0) = 50. 

b. 𝑚 = 1, 𝑐 = 10, 𝑘 = 125, 𝑤 = 5, 𝐹0 = 50, 𝑥(0) = 6, and 𝑣(0) = 50. 

 

a. We need to solve:     𝑥′′ + 125𝑥 = 50 cos(5𝑡) ,   𝑥(0) = 6,   𝑥′(0) = 50. 

 

 

    From an example in “Vibrating Springs” we know the solutions of: 

                                          𝑥′′ + 125𝑥 = 0 

   are given by:  𝑥(𝑡) = 𝐴𝑐𝑜𝑠(5√5𝑡) + 𝐵𝑠𝑖𝑛(5√5𝑡). 

 

   Since 𝑐 = 0, to find a particular solution we try: 

                                          𝑥𝑝 = 𝐸𝑐𝑜𝑠(5𝑡) 

                                      𝑥𝑝
′ = −5𝐸𝑠𝑖𝑛(5𝑡) 

                                      𝑥𝑝
′′ = −25𝐸𝑐𝑜𝑠(5𝑡). 

 

 

 



Plugging into  𝑥′′ + 125𝑥 = 50 cos(5𝑡) we get: 

       −25𝐸𝑐𝑜𝑠(5𝑡) + 125𝐸𝑐𝑜𝑠(5𝑡) = 50 cos(5𝑡) 

                                     100 Ecos(5𝑡) = 50 cos(5𝑡)            ⇒ 𝐸 =
1

2
 . 

 

Thus    𝑥𝑝 =
1

2
𝑐𝑜𝑠(5𝑡). 

 

So the general solution to 𝑥′′ + 125𝑥 = 50 cos(5𝑡) is: 

               𝑥(𝑡) = 𝐴𝑐𝑜𝑠(5√5𝑡) + 𝐵𝑠𝑖𝑛(5√5𝑡) +
1

2
cos(5𝑡). 

 

To solve for 𝐴 and 𝐵, we use:        𝑥(0) = 6,   𝑥′(0) = 50. 

 

𝑥′(𝑡) = −5√5 Asin(5√5𝑡) + 5√5𝐵𝑐𝑜𝑠(5√5𝑡) −
5

2
sin (5𝑡) 

 

So we have: 

   6 = 𝑥(0) = 𝐴 +
1

2
                 ⇒          𝐴 =

11

2
 

50 = 𝑥′(0) = 5√5𝐵                ⇒          𝐵 =
10

√5
 . 

 

Thus the solution to 𝑥′′ + 125𝑥 = 50 cos(5𝑡) ,   𝑥(0) = 6,   𝑥′(0) = 50 is: 

 

𝑥(𝑡) =
11

2
𝑐𝑜𝑠(5√5𝑡) +

10

√5
𝑠𝑖𝑛(5√5𝑡) +

1

2
cos(5𝑡). 



b.   We need to solve: 

          𝑥′′ + 10𝑥′ + 125𝑥 = 50 cos(5𝑡) ,   𝑥(0) = 6,   𝑥′(0) = 50. 

 
From an earlier example in Vibrating Springs we know the general solution 

to 𝑥′′ + 10𝑥′ + 125𝑥 = 0 is given by: 

 

                𝑥(𝑡) = 𝑒−5𝑡(𝐴𝑐𝑜𝑠(10𝑡) + 𝐵 𝑠𝑖𝑛(10𝑡)). 
 

Since 𝑐 ≠ 0, the particular solution to 𝑥′′ + 10𝑥′ + 125𝑥 = 50 cos(5𝑡) 
is of the form: 

                𝑥𝑝 = 𝐸𝑐𝑜𝑠(5𝑡) + 𝐹𝑠𝑖𝑛(5𝑡) 

              𝑥𝑝
′ = −5𝐸𝑠𝑖𝑛(5𝑡) + 5𝐹𝑐𝑜𝑠(5𝑡) 

              𝑥𝑝
′′ = −25𝐸𝑐𝑜𝑠(5𝑡) − 25𝐹𝑠𝑖𝑛(5𝑡). 

 

Plugging into 𝑥′′ + 10𝑥′ + 125𝑥 = 50 cos(5𝑡) we get: 
 

  −25𝐸𝑐𝑜𝑠(5𝑡) − 25𝐹𝑠𝑖𝑛(5𝑡) + 10(−5𝐸𝑠𝑖𝑛(5𝑡) + 5𝐹𝑐𝑜𝑠(5𝑡)) 

                                       +125(𝐸𝑐𝑜𝑠(5𝑡) + 𝐹𝑠𝑖𝑛(5𝑡)) = 50 cos(5𝑡). 

 

(−25𝐸 + 50𝐹 + 125𝐸)𝑐𝑜𝑠(5𝑡)

+ (−25𝐹 − 50𝐸 + 125𝐹) sin(5𝑡) = 50 cos(5𝑡). 

 

      100𝐸 + 50𝐹 = 50 

   −50𝐸 + 100𝐹 = 0           ⇒        𝐸 = 2𝐹. 

 

      200𝐹 + 50𝐹 = 50         ⇒       𝐹 =
1

5
 ,    𝐸 =

2

5
 . 

 

So 𝑥𝑝 =
2

5
cos(5𝑡) +

1

5
sin (5𝑡). 

 

 

 



So the general solution to 𝑥′′ + 10𝑥′ + 125𝑥 = 50 cos(5𝑡) is: 

 

  𝑥(𝑡) = 𝑒−5𝑡(𝐴𝑐𝑜𝑠(10𝑡) + 𝐵 𝑠𝑖𝑛(10𝑡)) +
2

5
cos(5𝑡) +

1

5
sin (5𝑡). 

               

To find 𝐴 and 𝐵 we use:    𝑥(0) = 6,      𝑥′(0) = 50. 

 

 𝑥′(𝑡) = 

𝑒−5𝑡(−10𝐴𝑠𝑖𝑛(10𝑡) + 10𝐵𝑐𝑜𝑠(10𝑡))

− 5𝑒−5𝑡(𝐴𝑐𝑜𝑠(10𝑡) + 𝐵 𝑠𝑖𝑛(10𝑡)) − 2 sin(5𝑡) + cos(5𝑡). 

 

 

6 = 𝑥(0) = 𝐴 +
2

5
                                ⇒       𝐴 =

28

5
 . 

50 = 𝑥′(0) = 10𝐵 − 5𝐴 + 1  

 

50 = 10𝐵 − 5 (
28

5
) + 1  

50 = 10𝐵 − 27  

77 = 10𝐵                                              ⇒        𝐵 =
77

10
 . 

 

Thus the solutions is: 

 

     𝑥(𝑡) = 𝑒−5𝑡 (
28

5
𝑐𝑜𝑠(10𝑡) +

77

10
 𝑠𝑖𝑛(10𝑡)) +

2

5
cos(5𝑡) +

1

5
sin (5𝑡).            

  


