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Vibrating Springs 

 

 Consider a body of mass, 𝑚, attached to one end of a spring while the 

other end of the spring is attached to the wall. Assume the body rests on a 

frictionless horizontal plane. 

 A dashpot is a device, like a shock absorber, that produces a force directed 

opposite to the direction of the mass. Assume the mass is attached to a dashpot 

(we can also think of this as representing any frictional force like air resistance). 

 

𝑥(𝑡) > 0 if spring is stretched. 

𝑥(𝑡) < 0 if spring is compressed. 

 

 

The force from the spring is governed by Hooke’s Law: 

𝐹𝑠 = −𝑘𝑥,      𝑘 = spring constant> 0. 

 

Assume the dashpot is designed so that: 

                                𝐹𝑅 = −𝑐𝑣 = −𝑐
𝑑𝑥

𝑑𝑡
 ,       𝑐 > 0.    
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In the absence of external forces, we refer to the motion in this case as free, 

Newton’s Law says: 

𝐹 = 𝑚𝑎 = 𝑚
𝑑2𝑥

𝑑𝑡2 = 𝑚𝑥′′ and 

𝐹 = 𝐹𝑆 + 𝐹𝑅 = −𝑘𝑥 − 𝑐
𝑑𝑥

𝑑𝑡
  or 

𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 0. 

There are three fundamentally different solutions to this differential equation 

based on the roots of the characteristic equation: 

𝑚𝑟2 + 𝑐𝑟 + 𝑘 = 0 

 

1) Overdamped case 

𝑐2 − 4𝑘𝑚 > 0 ;     2 real roots, both negative since 𝑚, 𝑐, 𝑘 > 0 

𝑥(𝑡) = 𝐴𝑒𝑟1𝑡 + 𝐵𝑒𝑟2𝑡 

 
 

 

 

𝑥(𝑡) = 7𝑒−𝑡 − 4𝑒−2𝑡  

𝑥(𝑡) = −4𝑒−𝑡 + 7𝑒−2𝑡  

𝑥(𝑡) = 2𝑒−𝑡 + 𝑒−2𝑡  
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2) Critically damped case 

𝑐2 − 4𝑘𝑚 = 0 ;    2 equal negative roots 

𝑥(𝑡) = 𝑒𝑟𝑡(𝐴 + 𝐵𝑡) 

 

 

 

 

 

 

 

 

 

 

 

 

 
3) Underdamped case 

𝑐2 − 4𝑘𝑚 < 0 ;     non-real, conjugate roots, 𝑎 ± 𝑏𝑖 (𝑎 is negative) 

𝑥(𝑡) = 𝑒𝑎𝑡(𝑐1 cos 𝑏𝑡 + 𝑐2 sin 𝑏𝑡).  

 

 

 

 

 

 

 

 

 

 

 

 

𝑥(𝑡) = 𝑒−𝑡(5𝑡 + 3) 

𝑥(𝑡) = 𝑒−𝑡(−3𝑡 + 3) 

𝑥(𝑡) = 𝑒−𝑡(𝑡 + 3) 

𝑥(𝑡) = 𝑒−.5𝑡(3𝑐𝑜𝑠4𝑡 + 3𝑠𝑖𝑛4𝑡) 
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If there is an external force, 𝐹(𝑡), put on the mass then the differential equation 

becomes: 

𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 𝐹(𝑡) 

 

If 𝐹(𝑡) = 0, we call the motion Free.  If 𝐹(𝑡) ≠ 0, we call the motion Forced.   

For now, we will just consider a free system with no external force, so 𝐹(𝑡) = 0. 

 

 

Free Undamped Motion   

 If 𝑐 = 0 we say we have undamped motion. So the differential equation 

generating the position 𝑥(𝑡) is  𝑚𝑥′′ + 𝑘𝑥 = 0, or we can write                   

𝑥′′ +
𝑘

𝑚
𝑥 = 0. 

If we define 𝑤0 = √
𝑘

𝑚
 then we have 𝑥′′ + 𝑤0

2𝑥 = 0 with the 

characteristic equation 𝑟2 + 𝑤0
2 = 0 or 𝑟 = ± 𝑖𝑤0. Thus, we can say that 

𝑥(𝑡) = 𝐴 cos 𝑤0𝑡 + 𝐵 sin 𝑤0𝑡 . 

We can put the RHS in a more useful form by letting: 

 

 

 

 

 

 

𝐶 = √𝐴2 + 𝐵2 , cos 𝛼 =
𝐴

𝐶
 , 𝑎𝑛𝑑 sin 𝛼 =

𝐵

𝐶
 ,  so that tan 𝛼 =

𝐵

𝐴
 . 

𝐵 

𝐴 

𝐶 

 

𝛼 
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We have to be careful when we solve for 𝛼 because the inverse tangent only has 

values between −
𝜋

2
 and 

𝜋

2
 and 𝐴, 𝐵 can be positive or negative. Thus, we get:                    

                             0 ≤ 𝛼 < 2𝜋;   but    −
𝜋

2
< tan−1 𝑝 <

𝜋

2
 ,   𝑝 ∈ ℝ. 

          𝛼 = tan−1 (
𝐵

𝐴
)                         If 𝐴, 𝐵 > 0  (1𝑠𝑡 quadrant) 

              = 𝜋 + tan−1 (
𝐵

𝐴
)                 If 𝐴 < 0,  (2𝑛𝑑 & 3𝑟𝑑 quadrants) 

               = 2𝜋 + tan−1 (
𝐵

𝐴
)              If 𝐴 > 0, 𝐵 < 0 (4𝑡ℎ quadrant). 

 

Now we can write: 

                      𝑥(𝑡) = 𝐶(
𝐴

𝐶
cos 𝑤0𝑡 +

𝐵

𝐶
sin 𝑤0𝑡)  

  = 𝐶(cos 𝛼 cos 𝑤0𝑡 + sin 𝛼 sin 𝑤0𝑡) 

                                = 𝐶(cos(𝑤0𝑡 − 𝛼)) 

where Amplitude = 𝐶,     Frequency =
𝑤0

2𝜋
 ,     Period =

2𝜋

𝑤0
 .  

 

Free Damped Motion and Undamped Motion 

Ex.    Given the values of 𝑚, 𝑐, 𝑘, 𝑥0, and 𝑣0, find 𝑥(𝑡) and determine if the 

motion is overdamped, critically damped, or underdamped.  If it’s underdamped, 

write: 𝑥(𝑡) = 𝐶𝑒−𝑝𝑡 cos(𝑤0𝑡 − 𝛼).  Also find the undamped position   

𝑢(𝑡) = 𝐶 cos(𝑤0𝑡 − 𝛼).  That would result if the dashpot is disconnected (i.e. 

𝑐 = 0) 

a) 𝑚 =
1

2
, 𝑐 = 3, 𝑘 = 4,   𝑥0 = 2, 𝑣0 = 0 

b) 𝑚 = 2, 𝑐 = 12, 𝑘 = 18, 𝑥0 = 2, 𝑣0 = −10 

c) 𝑚 = 1, 𝑐 = 10, 𝑘 = 125, 𝑥0 = 6, 𝑣0 = 50. 
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a) 𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 0    

𝑐2 − 4𝑘𝑚 = 32 − 4(4) (
1

2
) > 0 so motion is overdamped. 

1

2
𝑥′′ + 3𝑥′ + 4𝑥 = 0  

   𝑥′′ + 6𝑥′ + 8𝑥 = 0 

        𝑟2 + 6𝑟 + 8 = 0 
(𝑟 + 2)(𝑟 + 4) = 0   ⇒   𝑟 = −2, −4 

 𝑥(𝑡) = 𝐴𝑒−2𝑡 + 𝐵𝑒−4𝑡;                2 = 𝑥(0) = 𝐴 + 𝐵. 

𝑥′(𝑡) = −2𝐴𝑒−2𝑡 − 4𝐵𝑒−4𝑡,        0 = 𝑥′(0) = −2𝐴 − 4𝐵 

So   𝐵 = −2,    𝐴 = 4  and 

𝑥(𝑡) = 4𝑒−2𝑡 − 2𝑒−4𝑡 

 

 Undamped case:  

𝑐 = 0                                     

 
1

2
𝑢′′ + 4𝑢 = 0               

   𝑢′′ + 8𝑢 = 0                                 

       𝑟2 + 8 = 0                                

                 𝑟 = ±2√2 𝑖                                        

            𝑢(𝑡) = 𝐴 cos(2√2𝑡) + 𝐵(sin 2√2 𝑡) 

 𝑢′(𝑡) = −2√2𝐴 sin(2√2𝑡) + 2√2𝐵 cos(2√2 𝑡) 

         2 = 𝑢(0) = 𝐴 

         0 = 𝑢′(0) = 2√2𝐵   so 

         𝐴 = 2,   𝐵 = 0       and                     

        𝑢(𝑡) = 2 cos(2√2 𝑡) ;  

         Amplitude = 2,    Frequency =
2√2

2𝜋
=

√2

𝜋
 ,     Period =

𝜋

√2
 . 

 

𝑥(𝑡) = 4𝑒−2𝑡 − 2𝑒−4𝑡 

 

𝑢(𝑡) = 2 cos(2√2 𝑡) 
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b) 𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 0 ;             𝑐2 − 4𝑘𝑚 = 122 − 4(18)(2) = 0  

2𝑥′′ + 12𝑥′ + 18𝑥 = 0            so the motion is critically damped. 

        𝑥′′ + 6𝑥′ + 9𝑥 = 0 

             𝑟2 + 6𝑟 + 9 = 0 

                    (𝑟 + 3)2 = 0 

                                  𝑟 = −3 double root 
 𝑥(𝑡) = 𝑒−3𝑡(𝑐1 + 𝑐2 𝑡)  ;                                   2 = 𝑥(0) = 𝑐1   

𝑥′(𝑡) = 𝑒−3𝑡(𝑐2) − 3𝑒−3𝑡(𝑐1 + 𝑐2 𝑡);      −10 = 𝑥′(0) = 𝑐2 − 3𝑐1 

So  𝑐2 = −4  and   𝑐1 = 2 

𝑥(𝑡) = 𝑒−3𝑡(2 − 4𝑡) 

 

 

Undamped case: 𝑐 = 0 

2𝑢′′ + 18𝑢 = 0 

     𝑢′′ + 9𝑢 = 0 

         𝑟2 + 9 = 0 

                   𝑟 = ±3𝑖 

 𝑢(𝑡) = 𝐴 cos 3𝑡 + 𝐵 sin 3𝑡  ;                      2 = 𝑥(0) = 𝐴 

          𝑢′(𝑡) = −3𝐴 sin 3𝑡 + 3𝐵 cos 3𝑡 ;        −10 = 𝑥′(0) = 3𝐵 

So 𝐴 = 2,   𝐵 = −
10

3
 

𝐶 = √22 + (
10

3
)2 = √

136

9
=

2

3
√34   

𝛼 = tan−1
(−

10

3
)

2
+ 2𝜋 ;     since 𝐵 < 0, 𝐴 > 0 

𝛼 = tan−1(−
5

3
) + 2𝜋 ≈ 5.2528  and 

𝑢(𝑡) =
2

3
√34 cos(3 𝑡 − 5.2528).  

 

 

 

𝑥(𝑡) = 𝑒−3𝑡(2 − 4𝑡) 

 

𝑢(𝑡) =
2

3
√34 cos(3 𝑡 − 5.2528)  
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𝑚𝑥′′ + 𝑐𝑥′ + 𝑘𝑥 = 0 ;        𝑐2 − 4𝑘𝑚 = 102 − 4(1)(125) < 0 

𝑥′′ + 10𝑥′ + 125𝑥 = 0           so the motion is underdamped. 

     𝑟2 + 10𝑟 + 125 = 0 

                                𝑟 =
−10±√100−500

2
= −5 ± 10𝑖  

 𝑥(𝑡) = 𝑒−5𝑡(𝐴 cos 10𝑡 + 𝐵 sin 10𝑡) 

𝑥′(𝑡) = 𝑒−5𝑡(−10𝐴 sin 10𝑡 + 10𝐵 cos 10𝑡) 

                       −5𝑒−5𝑡(𝐴 cos 10𝑡 + 𝐵 sin 10𝑡) 

6 = 𝑥(0) = 𝐴 

50 = 𝑥′(0) = 1(0 + 10𝐵) − 5(1)(𝐴 + 0) = 10𝐵 − 5𝐴 

𝐴 = 6, 𝐵 = 8 

𝐶 = √62 + 82 = 10 

𝛼 = tan−1(
8

6
) ≈ .9273 ,   since 𝐴, 𝐵 > 0. 

𝑥(𝑡) = 10𝑒−5𝑡 cos(10𝑡 − .9273) 

 

Undamped case: 𝑐 = 0 

𝑢′′ + 125𝑢 = 0 

    𝑟2 + 125 = 0 

                   𝑟 = ±5√5𝑖 

 𝑢(𝑡) = 𝐴 cos(5√5 𝑡) + 𝐵 sin(5√5 𝑡) 

𝑢′(𝑡) = −5√5𝐴 sin(5√5 𝑡) + 5√5𝐵 cos(5√5 𝑡) 

6 = 𝑢(0) = 𝐴 

50 = 𝑢′(0) = 5√5𝐵   ⇒   𝐵 =
50

5√5
=

10

√5
 . 

𝐶 = √𝐴2 + 𝐵2 = √62 +
100

5
= √56 = 2√14     

𝛼 = tan−1(

10

√5

6
) = tan−1(

10

6√5
) ≈ .6405 ,   since 𝐴, 𝐵 > 0. 

𝑢(𝑡) = 2√14 cos(5√5𝑡 − .6405).  

 

𝑥(𝑡) = 10𝑒−5𝑡 cos(10𝑡 − .9273) 

 


