Vibrating Springs

Consider a body of mass, m, attached to one end of a spring while the
other end of the spring is attached to the wall. Assume the body rests on a
frictionless horizontal plane.

A dashpot is a device, like a shock absorber, that produces a force directed
opposite to the direction of the mass. Assume the mass is attached to a dashpot
(we can also think of this as representing any frictional force like air resistance).

x(t) > 0if spring is stretched.

x(t) < 0if spring is compressed.

The force from the spring is governed by Hooke’s Law:

F, = —kx, k = spring constant> O.

Assume the dashpot is designed so that:

Fp=—cv=—c— c > 0.
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In the absence of external forces, we refer to the motion in this case as free,
Newton’s Law says:

d?x /
F=ma=mﬁ=mx and

F=F5+FR=_kx_C% or
dt
mx" +cx' +kx =0.

There are three fundamentally different solutions to this differential equation
based on the roots of the characteristic equation:

mréi+cr+k=0

1) Overdamped case
c?> —4km > 0; 2 real roots, both negative sincem, ¢,k > 0
x(t) = Ae™t! + Be™2t
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2) Critically damped case

c? —4km = 0;

x(t) = e (A + Bt)
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3) Underdamped case

c> —4km < 0;
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If there is an external force, F (t), put on the mass then the differential equation

becomes:

mx" + cx' + kx = F(t)

If F(t) = 0, we call the motion Free. If F(t) # 0, we call the motion Forced.
For now, we will just consider a free system with no external force, so F(t) = 0.

Free Undamped Motion

If c = 0 we say we have undamped motion. So the differential equation
generating the position x(t) is mx'" + kx = 0, or we can write

k
x"+—x=0.
m

k
If we define wy = \/% then we have x”’ + wo2x = 0 with the

characteristic equation 72 + WO2 = 0 orr = % iwy. Thus, we can say that
x(t) = Acoswyt + Bsinwyt .

We can put the RHS in a more useful form by letting:

A

A . B B
C =+VA%? + B%, cosa == ,and sin a =< so that tan « =
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We have to be careful when we solve for @ because the inverse tangent only has

A VA
values between — — and Y and A, B can be positive or negative. Thus, we get:

0<a<?2m but —%<tan‘1p<§, p € R.

a = tan~! (%) If A,B > 0 (1st quadrant)
=m+tan~! (%) If A <0, (2nd & 3rd quadrants)
= 2m + tan~! (E) If A > 0,B < 0 (4th quadrant).

Now we can write:
A B .
x(t) = C(E cos Wot + —sin wyt)
= C(cos a coswyt + sin a sin wyt)
= C(cos(wyt —))

2
where Amplitude = C, Frequency = ‘;V—; , Period = W—n .
0

Free Damped Motion and Undamped Motion

Ex. Given the values of m, ¢, k, x5, and vy, find x(t) and determine if the
motion is overdamped, critically damped, or underdamped. If it’'s underdamped,
write: x(t) = Ce Pt cos(wyt — a). Also find the undamped position

u(t) = C cos(wyt — a). That would result if the dashpot is disconnected (i.e.

c =0)

I
w

a)m=%,c , k=4, xg=2, vy=0
c

b) m =2, 12, k =18, xy =2, vy = —10
cm=1, c=10, k =125, x, =6, vy = 50.



a) mx" +cx'+kx=0
c? —4km = 3% — 4(4) (%) > 0 so motion is overdamped.
%x” +3x'"+4x =0

x"+6x"+8x=0
r’+6r+8=0
r+2)r+4)=0 = r=-2,-4
x(t) = Ae %t + Be ™ 2 =x(0) =A4+B.
x'(t) = —24e7 %t —4Be™*, 0=x'(0)=—-24—-4B
So B=-2, A=4 and
x(t) = 472t — 274

x(t) = 4e 2t —Re 4

Undamped case:

c=0

1 4]

-u'+4u=0

2

u”"+8u=0
r*+8=0

r=42V2i
u(t) = Acos(2V2t) + B(sin2v21t)
u'(t) = —2v2Asin(2v2t) + 2vV2B cos(2V2 t)
2 =u(0) =4 N NN
0 =u'(0) = 2v2B so A e N e | B
A=2, B=0 and N HESA VAV (BN RSEA VAW [RRSRERR VY /RN
u(t) = 2cos(2V2t); 2 - uG) =2 cos(Z;/E t)

Amplitude = 2, Frequency = % = % , Period =

5l



b) mx" +cx'+kx =0; c?—4km=12%2-4(18)(2) =0
2x" +12x"+18x =0 so the motion is critically damped.
x"+6x"+9x =0
r’+6r+9=0

(r+3)2=0
r = —3 double root
x(t) =e 3 (e, + ¢, t) ; 2=x(0) =¢
x'(t) =e 3 (c,) —3e73(c; + ¢y t); —10=x"(0) = ¢y — 3¢y
So c; =—4 and ¢ =2 2

x(0) = ™2 - 4) x(t) =le73t(2 —|4t)

Undamped case: ¢ = 0

2u”" +18u =0
u”+9u=0 o N — — .
r24+9=0
r =43
u(t) = Acos3t + Bsin3t ; 2=x(0)=4
u'(t) = —3Asin3t+3Bcos3t; —10=x'(0) =3B
SoA=2 B=-——=

3
C= |22+ ()2 = |[="=2V34

1 (_%)

a = tan~ T+27‘[; sinceB<0, A>0

a = tan" (- g) + 27 ~ 52528 and A /\ /\
u(t) = EMCOS(S t — 5.2528).

|
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mx" +cx' +kx=0; c? —4km =10% —4(1)(125) <0
x'"4+10x"+125x =0 so the motion is underdamped.
r?+10r +125=0

_ —10i\/1200—500 — —5+ 10i

x(t) = e >*(A cos 10t + B sin 10t)
x'(t) = e_St(—10A sin 10t + 10B cos 10t)

5e>t(A cos 10t + B sin 10¢t)
6 = ( )=A
50 = x'(0) = 1(0 + 10B) — 5(1)(A + 0) = 10B — 54
A=@ B =38
C=+62+82=10 () = 10e~5F cos(10t —.9273)

a = tan_l(g) ~ 9273, since A,B > 0.
x(t) = 10e7> cos(10t —.9273) 1

Undamped case: ¢ = 0

u’" +125u=0 ]
r2 +125=0 \/
r = iS\/gi

u(t) = Acos(5V5t) + Bsin(5V5 t)
u’(t) = —5\/§A sin(5V5 t) + 5V5B cos(5V5 t)
— u(O) —
50 10

O—u(O)—S\/_B = B=--=—.

=VA2 + B2 = |62 +ﬂ V56 = 2v14
10

@ = tan~ 1(‘F) = ta ‘1(—) ~ .6405, since 4,B > 0.

u(t)—Z\/_cos(S\/_t—.6405).\ | :
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