A **differential equation** is an equation relating a function and one or more of its derivatives. The solutions to a differential equation are all functions that satisfy the equation.

Differential Equation	General Solution
$\frac{dy}{dx} = 2x$	$y = x^2 + c$
y'' + 9y = 0	$y = A\cos 3x + B\sin 3x$

In the second case notice that:

$$y = A\cos 3x + B\sin 3x$$
$$y' = -3A\sin 3x + 3B\cos 3x$$
$$y'' = -9A\cos 3x - 9B\sin 3x$$

Thus we have:

$$y'' + 9y = (-9A\cos 3x - 9B\sin 3x) + 9(A\cos 3x + B\sin 3x) = 0.$$

Hence $y = A \cos 3x + B \sin 3x$ is a solution to the differential equation y'' + 9y = 0.

y'' + 9y = 0 is called a 2nd order differential equation because the second derivative of y appears in the equation.

Initial Value Problem: The solution to a differential equation given an initial condition or conditions.

Ex. Solve
$$\frac{dy}{dx} = 4x^3$$
; with the initial condition that $y(1) = 3$.

General Solution:
$$y = x^4 + c$$

Initial Condition: $y(1) = 1^4 + c = 3$
 $\Rightarrow c = 2$
 $y = x^4 + 2$ is called the **Particular Solution**.
 $y = x^4 + c$ is called the **General Solution**.

If we have $\frac{dy}{dx} = g(x)$ or $\frac{d^2y}{dx^2} = g(x)$ we can try integrating both sides.

Ex. Solve
$$\frac{dy}{dx} = x^2 \sqrt{x^3 + 1}$$
; $y(2) = 3$.

General Solution:

$$y = \int x^{2} (x^{3} + 1)^{\frac{1}{2}} dx$$

Let $u = x^{3} + 1$
 $du = 3x^{2} dx$
 $\frac{1}{3} du = x^{2} dx$
 $\int x^{2} (x^{3} + 1)^{\frac{1}{2}} dx = \frac{1}{3} \int u^{\frac{1}{2}} du = \frac{1}{3} \left(\frac{2}{3}u^{\frac{3}{2}}\right) + c$
 $y = \frac{2}{9} (x^{3} + 1)^{\frac{3}{2}} + c$

Particular Solution:

$$y(2) = \frac{2}{9}(2^{3} + 1)^{\frac{3}{2}} + c = 3$$
$$\frac{2}{9}(9)^{\frac{3}{2}} + c = 3$$
$$\frac{2}{9}(27) + c = 3$$
$$6 + c = 3$$
$$c = -3$$
$$y = \frac{2}{9}(x^{3} + 1)^{\frac{3}{2}} - 3$$

Ex. Find the General Solution of $\frac{d^2y}{dx^2} = 6x + \sin x$.

$$\frac{dy}{dx} = \int 6x + \sin x \, dx = 3x^2 - \cos x + c_1$$
$$y = \int (3x^2 - \cos x + c_1) \, dx = x^3 - \sin x + c_1 x + c_2.$$

Velocity and Acceleration

When a particle moves in a line and the position is given by x(t) then,

$$v(t) = \frac{dx}{dt} =$$
velocity $a(t) = \frac{d^2x}{dt^2} =$ acceleration $= \frac{dv}{dt}$.

Ex. A ball is dropped from 100 feet above the ground. If acceleration due to gravity is $-32ft/sec^2$ find the position after 2 seconds.

So we must solve the differential equation:

$$\frac{d^2x}{dt^2} = -32$$
; subject to the initial conditions: $x(0) = 100$, $v(0) = 0$.

$$a = \frac{d^2x}{dt^2} = -32 = \frac{dv}{dt}$$
$$v(t) = \int -32dt = -32t + c$$
$$0 = v(0) = -32(0) + c \quad \Rightarrow c = 0.$$
$$v(t) = -32t.$$

$$v(t) = \frac{dx}{dt} = -32t$$

$$x(t) = \int -32t \, dt = -16t^2 + c$$

$$100 = x(0) = -16(0)^2 + c \implies c = 100$$

$$x(t) = -16t^2 + 100.$$

$$x(2) = -16(2)^2 + 100 = 36 \text{ feet above the ground.}$$

Ex. A ball is launched straight up with an initial velocity of 96ft/sec from a point 256 feet above the water. If acceleration due to gravity is $-32ft/sec^2$, find the time t when the ball hits the water.

Differential equation: $a = \frac{d^2x}{dt^2} = -32 = \frac{dv}{dt}$ Initial Conditions: x(0) = 256, v(0) = 96.

$$a(t) = \frac{av}{dt} = -32$$

$$v(t) = \int -32 \, dt = -32t + c_1$$

$$96 = v(0) = -32(0) + c_1 \implies c_1 = 96 \text{ so}$$

$$v(t) = -32t + 96.$$

 $x(t) = \int v(t) dt = \int (-32t + 96) dt = -16t^{2} + 96t + c_{2}$ 256 = x(0) = -16(0)^{2} + 96(0) + c_{2} \implies c_{2} = 256 \text{ so} x(t) = -16t² + 96t + 256.

The ball hits the water when x(t) = 0. $0 = x(t) = -16(t^2 - 6t - 16) = -16(t - 8)(t + 2) = 0$ t = 8, -2

Since $t \ge 0$, the ball hits the water after 8 seconds.