Integrating Differential Equations- HW Problems

Solve the following differential equations.

- 1. $\frac{dy}{dx} = \frac{2}{x^3}$; y(1) = 3
- 2. $\frac{dy}{dx} = xe^{(x^2)}; \quad y(0) = 2.$

In problems 3 and 4 find the position function x(t) given the acceleration function a(t), initial velocity $v_0 = v(0)$, and initial position, $x_0 = x(0)$.

- 3. a(t) = -2, $v_0 = 10$, $x_0 = -4$
- 4. a(t) = 6t + 1, $v_0 = -3$, $x_0 = 2$.

5. At time t = 0 the brakes of a car are applied to a car travelling at $22.2m/sec ~(\approx 80 \text{km/hr})$. The car decelerates at a constant rate of $20m/sec^2$. Calculate how far the car travels before it comes to a stop.