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                                      Cauchy’s Integral Formula 

 

     Cauchy’s integral formula shows that the values of an analytic function 𝑓 on 

the boundary of a closed contour 𝐶 determine the values of 𝑓 interior to 𝐶. 

 

Theorem (Cauchy’s Integral Formula)  Let 𝑓(𝑧) be analytic interior to and on a 

simple closed contour 𝐶.  Then at any interior point 𝑧 = 𝑎     

                                            𝑓(𝑎) = 
1

2𝜋𝑖
∮

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
. 

 

Outline of Proof:  Start by making a crosscut from 𝐶 to a circle of radius 𝛿 around 

           𝑎. Call that circle 𝐶1. 

 

 

 

 

 

 

 

 By Cauchy's theorem we have 

                                 ∮
𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
= ∮

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶1
.   

 Now we write: 

         ∮  
𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶1
= 𝑓(𝑎) ∮

1

𝑧−𝑎
𝑑𝑧 + ∮

𝑓(𝑧)−𝑓(𝑎)

𝑧−𝑎
𝑑𝑧

𝐶1𝐶1
.     

𝑎 
𝛿 

𝐶 

𝐶1 

𝑧(𝑡) = 𝑎 + 𝛿𝑒𝑖𝑡 
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By parametrizing the circle of radius  𝛿 around 𝑎, 𝑧(𝑡) = 𝑎 + 𝛿𝑒𝑖𝑡, we get: 

                                          ∮
1

𝑧−𝑎
𝑑𝑧 = 2𝜋𝑖

𝐶1
.    

 

Since 𝑓(𝑧) is continuous we know for all 𝜖 > 0 there exists a 𝛿 > 0 such that if            

|𝑧 − 𝑎| < 𝛿 then |𝑓(𝑧) − 𝑓(𝑎)| < 𝜖.  Thus we can say: 

                  |∮  
𝑓(𝑧)−𝑓(𝑎)

𝑧−𝑎
𝑑𝑧

𝐶1
| ≤ ∮  

|𝑓(𝑧)−𝑓(𝑎)|

|𝑧−𝑎|
|𝑑𝑧|

𝐶1
         

                                                         ≤ ∮
𝜖

𝛿
|𝑑𝑧

𝐶1
|= (2𝜋𝛿) (

𝜖

𝛿
) = 2𝜋𝜖.    

 

Since 𝜖 is any positive number ⟹  ∮  
𝑓(𝑧)−𝑓(𝑎)

𝑧−𝑎
𝑑𝑧

𝐶1
= 0.   

                 Thus                ∮  
𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
= 2𝜋𝑖(𝑓(𝑎))  

                  or                            𝑓(𝑎) =
1

2𝜋𝑖
∮  

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
.   

 

We can now show that if 𝑓(𝑧) is analytic (i.e. has one derivative) then it must 

have an infinite number of derivatives and we can find a formula for them. 

 

Theorem (We will also call this Cauchy’s Integral Formula): Let 𝑓(𝑧) be analytic 

interior to and on a simple closed contour 𝐶, then 𝑓(𝑘)(𝑧), 𝑘 = 1,2, … exists in 

the domain 𝐷 interior to 𝐶 and 

                                 𝑓(𝑘)(𝑎) =
𝑘!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑎)
𝑘+1 𝑑𝑧.

𝐶
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Cauchy’s Integral Formula tells us that if a complex function has one derivative in 

a domain 𝐷 bounded by a simple closed contour, it has an in infinite number of 

derivatives (later we will also see that the Taylor series of 𝑓(𝑧) will also converge 

to the function 𝑓(𝑧) in 𝐷) in 𝐷.  This is very different from real valued functions.  

For functions of a real variable you can have a function with one derivative, but 

not two derivatives, or two derivatives but not three derivatives, and so on. 

 

Proof:  Let’s start by proving the formula for 𝑘 = 1. 

Let 2𝛿 =min|𝑧 − 𝑎|,   𝑧 ∈ 𝐶, 

i.e., 𝑧 is the closest point on 𝐶 to 𝑎. 

 

 

 

 

 

Using Cauchy’s Integral Formula we can say: 

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
=

1

2𝜋𝑖
(

1

ℎ
) ∮ (

𝑓(𝑧)

𝑧−(𝑎+ℎ)
−

𝑓(𝑧)

𝑧−𝑎
)𝑑𝑧

𝐶
  

                      =
1

2𝜋𝑖
(

1

ℎ
) ∮ 𝑓(𝑧)(

ℎ

(𝑧−(𝑎+ℎ))(𝑧−𝑎)
)𝑑𝑧

𝐶
 

                      =
1

2𝜋𝑖
∮ 𝑓(𝑧)(

1

(𝑧−(𝑎+ℎ))(𝑧−𝑎)
)𝑑𝑧

𝐶
. 

 

Notice that:     

                  
1

(𝑧−(𝑎+ℎ))(𝑧−𝑎)
=

1

(𝑧−𝑎)2 +
ℎ

(𝑧−𝑎)2(𝑧−(𝑎+ℎ))
 . 

 

𝐷 
𝑎 

2𝛿 

𝐶 
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So we have: 

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
=

1

2𝜋𝑖
∮ 𝑓(𝑧) (

1

(𝑧−𝑎)2) 𝑑𝑧 +
𝐶

                                               
ℎ

2𝜋𝑖
∮ 𝑓(𝑧)(

1

(𝑧−𝑎)2(𝑧−(𝑎+ℎ))
)𝑑𝑧

𝐶
. 

So we just need to show that: 

                    lim
ℎ→0

ℎ
2𝜋𝑖 ∮ 𝑓(𝑧)( 1

(𝑧−𝑎)2(𝑧−(𝑎+ℎ))
)𝑑𝑧𝐶 = 0.   

 

If we choose ℎ so that |ℎ| < 𝛿, then we have by the triangle inequality: 

             |𝑧 − (𝑎 + ℎ)| ≥ |𝑧 − 𝑎| − |ℎ| > 2𝛿 − 𝛿 = 𝛿. 

 

Since 𝑓(𝑧) is continuous on 𝐶, 𝑓(𝑧) is bounded in 𝐶.  So there is a real number 

𝑀 such that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶. 

 

Thus we can say: 

                               |
𝑓(𝑧)

(𝑧−𝑎)2(𝑧−(𝑎+ℎ))
| ≤

𝑀

(2𝛿)2𝛿
 . 

Hence we have: 

               0 ≤ |
ℎ

2𝜋𝑖
∮ 𝑓(𝑧) (

1

(𝑧−𝑎)2(𝑧−(𝑎+ℎ))
) 𝑑𝑧

𝐶
| ≤

𝑀|ℎ|

(2𝛿)2𝛿
∮ |𝑑𝑧|

𝐶
  

                                                                                    =
𝑀|ℎ|

(2𝛿)2𝛿
𝐿. 

Where 𝐿 is the length of 𝐶. 

Now as ℎ goes to 0, the right hand side goes to 0. 

Thus by the squeeze theorem,  lim
ℎ→0

ℎ
2𝜋𝑖 ∮ 𝑓(𝑧)( 1

(𝑧−𝑎)2(𝑧−(𝑎+ℎ))
)𝑑𝑧𝐶 = 0.   
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Thus we have:      𝑓′(𝑎) = 
1!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑎)2 𝑑𝑧.
𝐶

 

 

Repeating this argument gives the formula for higher order derivatives. 

 

Theorem:  let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) be analytic in 𝐷.  Then all partial 

derivatives of 𝑢 and 𝑣, of all orders, are continuous in 𝐷. 

 

This follow directly because 𝑓(𝑘)(𝑧) exists for all 𝑘 = 1,2,3, … and because: 

                            𝑓′(𝑧) = 𝑢𝑥 + 𝑖𝑣𝑥 = 𝑣𝑦 − 𝑖𝑢𝑦 

 

Cauchy’s integral formula gives us a way to evaluate many integrals around a 

simple closed contour without parametrizing the curve. 

 

Ex.  Evaluate ∮  
𝑒𝑧

𝑧−2
𝑑𝑧

𝐶
  where   

a. 𝐶 is the circle |𝑧| = 3 

b. 𝐶 is the circle |𝑧| = 1. 
 

 

 

 

 

 

 

 

 

 

|𝑧| = 1 

|𝑧| = 3 

2 
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a.  By Cauchy’s Integral Formula: 

   𝑓(𝑎) =
1

2𝜋𝑖
∮  

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
,    when 𝑎 is inside of 𝐶.   

 

In this example, 𝑎 = 2, 𝑓(𝑧) = 𝑒𝑧and 2 is inside the circle |𝑧| = 3.  

 

                 𝑓(2) =
1

2𝜋𝑖
∮

𝑓(𝑧)

𝑧−2
 𝑑𝑧

𝐶
,   where 𝑓(𝑧) = 𝑒𝑧;  So  

                       𝑒2 =
1

2𝜋𝑖
∮

𝑒𝑧

𝑧−2
𝑑𝑧

𝐶
   or     

                2𝜋𝑒2𝑖 = ∮  
𝑒𝑧

𝑧−2
𝑑𝑧.

𝐶
    

 

Note: This integral can also be evaluated by doing the following: 

               ∮
𝑒𝑧

𝑧−2
𝑑𝑧 =

𝐶
∮

𝑒(𝑧−2)𝑒2

𝑧−2
𝑑𝑧 = 𝑒2 ∮

𝑒(𝑧−2)

𝑧−2
𝑑𝑧.

𝐶𝐶
        

            Now make a crosscut into a circle, 𝐶1, of radius 𝛿 < 1. 

           Using Cauchy's theorem (see previous section) we get: 

                     𝑒2 ∮
𝑒(𝑧−2)

𝑧−2
𝑑𝑧 = 𝑒2 ∮

𝑒(𝑧−2)

𝑧−2
𝑑𝑧.

𝐶1𝐶
 

          Now make the substitution 𝑤 = 𝑧 − 2,   𝑑𝑤 = 𝑑𝑧, and use a power 

            series for 𝑒𝑤. 

 

 

 

  b.     𝑎 = 2 is outside the circle 𝐶 is the circle |𝑧| = 1, thus 
𝑒𝑧

𝑧−2
 is analytic 

inside the circle |𝑧| = 1.  So by Cauchy’s Theorem:      ∮
𝑒𝑧

𝑧−2
𝑑𝑧

𝐶
= 0. 
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Ex.  Evaluate ∮
𝑒2𝑧

(2𝑧+1)
3 𝑑𝑧

𝐶
, where 𝐶 is the circle |𝑧| = 3.   

 

 

     Cauchy’s Integral Formula for derivatives is: 

𝑓(𝑘)(𝑎) =
𝑘!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑎)𝑘+1 𝑑𝑧
𝐶

      

 

∮
𝑒2𝑧

(2𝑧+1)3 𝑑𝑧
𝐶

= ∮
𝑒2𝑧

8(𝑧+
1

2
)3

𝑑𝑧 =
1

8
∮

𝑒2𝑧

(𝑧+
1

2
)3

𝑑𝑧.
𝐶𝐶

   

 

𝑓(2)(𝑎) =
2!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑎)3 𝑑𝑧
𝐶

 .  

 

So if 𝑓(𝑧) = 𝑒2𝑧;     𝑎 = −
1

2
 . 

𝑓′(𝑧) = 2𝑒2𝑍  

𝑓′′(𝑧) = 4𝑒2𝑧    and    𝑓′′ (−
1

2
) = 4𝑒−1.  

 

𝑓′′ (−
1

2
) =

2!

2𝜋𝑖
∮

𝑒2𝑧

(𝑧+
1

2
)3

𝑑𝑧 =
1

𝜋𝑖𝐶
∮

𝑒2𝑧

(𝑧+
1

2
)3

𝑑𝑧
𝐶

  

         4𝑒−1 =
1

𝜋𝑖
∮

𝑒2𝑧

(𝑧+
1

2
)3

𝑑𝑧
𝐶

  

     4𝜋𝑖𝑒−1 = ∮
𝑒2𝑧

(𝑧+
1

2
)3

𝑑𝑧
𝐶

 ;         so 

|𝑧| = 3 

−
1

2
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𝜋𝑖

2
𝑒−1 = 

1

8
∮

𝑒2𝑧

(𝑧+
1

2
)3

𝑑𝑧 = ∮
𝑒2𝑧

(2𝑧+1)3 𝑑𝑧
𝐶𝐶

. 

Note:  This integral can also be evaluated by: 

    ∮
𝑒2𝑧

(2𝑧+1)3 𝑑𝑧
𝐶

= 𝑒−1 ∮
𝑒(2𝑧+1)

(2𝑧+1)3 𝑑𝑧
𝐶

;   let 𝑤 = 2𝑧 + 1. 

Now use a crosscut to a circle around  𝑤 = 0, (i.e.  𝑧 = −
1

2
) and a power 

series for 𝑒𝑤. 

 

 

Theorem:  Let 𝐶 be a circle of radius 𝑅 around 𝑧 = 𝑎.  If 𝑓(𝑧) is analytic 

inside and on 𝐶 then: 

                                                  |𝑓(𝑛)(𝑎)|   ≤
𝑛!𝑀

𝑅𝑛  

where |𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ 𝐶. 

 

 

Proof:  

𝐶 is the circle,  |𝑧 − 𝑎| = 𝑅.  

Since 𝑓(𝑧) is continuous on 𝐶  

(since it’s differentiable on 𝐶)  

we know that there is an 𝑀 ∈ ℝ  

such that |𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ 𝐶. 

   

 

𝑎 

𝑅 

𝐶 
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By Cauchy’s Integral Theorem for 

derivatives we have: 

 𝑓(𝑛)(𝑎) = 
𝑛!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑎)𝑛+1 𝑑𝑧
𝐶

.       

Which means: 

| 𝑓(𝑛)(𝑎)| = |
𝑛!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧−𝑎)𝑛+1 𝑑𝑧
𝐶

| ≤
𝑛!

2𝜋
∮

|𝑓(𝑧)|

|𝑧−𝑎|𝑛+1
|𝑑𝑧|

𝐶
  

                     ≤
𝑛!

2𝜋

𝑀

𝑅𝑛+1 ∮ |𝑑𝑧|
𝐶

;          

But ∮ |𝑑𝑧|
𝐶

=Arclength of 𝐶 = 2𝜋𝑅, so  

 

| 𝑓(𝑛)(𝑎)| ≤
𝑛!

2𝜋

𝑀

𝑅𝑛+1
(2𝜋𝑅) =

𝑛!𝑀

𝑅𝑛  .  

  

 

Recall that an entire function is a function that is analytic in the complex plane 

(excluding the point at ∞). 

 

Theorem (Liouville) If 𝑓(𝑧) is entire and bounded in the complex plane then 

                  𝑓(𝑧) =constant. 

 

Proof:  Using the inequality |𝑓(𝑛)(𝑎)| ≤
𝑛!𝑀

𝑅𝑛  when 𝑛 = 1 we have: 

|𝑓′(𝑎)| ≤
𝑀

𝑅
 ;   where  |𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ 𝐶, a circle of radius 𝑅 around      

𝑧 = 𝑎, for any point 𝑎 ∈ ℂ.  
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But 𝑓(𝑧) is bounded on the complex plane, so there is an 𝑀 ∈ ℝ such that 

|𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ ℂ.  

 

Thus for any point 𝑎 ∈ ℂ,  |𝑓′(𝑎)| ≤
𝑀

𝑅
   for any circle of radius 𝑅 around      

𝑧 = 𝑎 (that is, the same 𝑀 works for any point 𝑧 = 𝑎 and circle of radius 𝑅).  

 

So as 𝑅 goes to infinity 
𝑀

𝑅
 goes to 0.    

Thus 𝑓′(𝑎) = 0 for any point 𝑎 ∈ ℂ.  Thus 𝑓(𝑧) =constant. 

 

Again, this is a difference between complex functions and functions of a real 

variable.  There are many examples of real valued functions that are differentiable 

on ℝ (or ℝ𝑛), bounded, and are not equal to constant functions  

(e.g. 𝑓(𝑥) = 𝑠𝑖𝑛𝑥,    𝑓(𝑥) =
1

1+𝑥2 ,  etc.) 

Why don’t 𝑓(𝑧) = 𝑠𝑖𝑛𝑧  or 𝑓(𝑧) =
1

1+𝑧2 contradict Liouville’s theorem?   

(Answer:  They are not bounded on ℂ).  

 

Corollary (Fundamental Theorem of Algebra): Any 𝑚𝑡ℎ degree polynomial, 𝑃(𝑧),    

𝑚 ≥ 1 has at least one root (i.e. a point 𝑎 ∈ ℂ, such that 𝑃(𝑎) = 0).  

This actually implies that any 𝑚𝑡ℎ degree polynomial has exactly 𝑚 roots.  

 

Proof:  Proof by contradiction.  Assume that 𝑃(𝑧), a polynomial of degree 

 𝑚 ≥ 1, is never 0 and hence does not have a root.  

Let 𝑅(𝑧) =
1

𝑃(𝑧)
 .     
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Then 𝑅(𝑧) is analytic in ℂ.  Also, as |𝑧| → ∞, 𝑃(𝑧) → ∞, and hence       

𝑅(𝑧) → 0.  Thus 𝑅(𝑧) is bounded in ℂ. 

By Liouville’s theorem 𝑅(𝑧) =
1

𝑃(𝑧)
 must be a constant. 

Thus 𝑃(𝑧) =constant. 

This contradicts that 𝑃(𝑧) is a polynomial of degree 𝑚 ≥ 1. 

Thus 𝑃(𝑧) must have a root. 

 

Cauchy’s theorem says if 𝑓(𝑧) is analytic inside and including a simple closed 

contour 𝐶, then ∮ 𝑓(𝑧)𝑑𝑧 = 0
𝐶

.  Morera’s theorem shows the converse is true.  

 

 

Morera’s Theorem:  If 𝑓(𝑧) is continuous in a simply connected domain 𝐷 and if 

∮ 𝑓(𝑧)𝑑𝑧 = 0
𝐶

 for every simple closed contour 𝐶 lying in 𝐷, then 𝑓(𝑧) is 

analytic in 𝐷.  

 

 

Proof:   We had a theorem that said if 𝑓(𝑧) is continuous in a simply connected 

domain 𝐷 and if ∮ 𝑓(𝑧)𝑑𝑧 = 0
𝐶

 for every simple closed contour 𝐶 lying in 𝐷, 

then there exists a function 𝐹(𝑧), analytic in 𝐷, such that 𝐹′(𝑧) = 𝑓(𝑧).  

 

From Cauchy’s Integral Formula we know that if a function 𝐹(𝑧) has a derivative 

(i.e. is analytic) then it has an infinite number of derivatives and hence all 

derivatives of 𝐹(𝑧) are analytic. 

Since 𝑓(𝑧) = 𝐹′(𝑧), 𝑓(𝑧) is analytic. 
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Ex.  Use Cauchy’s Integral formula to show that 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧
  is not analytic 

        inside a circle of radius 𝑅.     
 

   By Cauchy’s Integral Formula:  1 = cos(0) =
1

2𝜋𝑖
∮

𝑐𝑜𝑠𝑧

𝑧
𝑑𝑧

𝐶
 for a closed 

   curve inside a circle of radius 𝑅 thus ∮
𝑐𝑜𝑠𝑧

𝑧
𝑑𝑧

𝐶
≠ 0. 

   Hence  𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧
   is not analytic inside a circle of radius 𝑅 by Cauchy’s 

   theorem. 

            

 

 

By Cauchy’s Integral Theorem we know if 𝑓(𝑧) is analytic on and inside 𝐶 

                                 𝑓(𝑎) = 
1

2𝜋𝑖
∮

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
.   

 

In particular, if we take 𝐶 to be a circle of radius 𝑟 around 𝑧 = 𝑎: 

             𝑧(𝜃) = 𝑎 + 𝑟𝑒𝑖𝜃;       0 ≤ 𝜃 ≤ 2𝜋,      𝑑𝑧 = 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 

                𝑓(𝑎) =
1

2𝜋𝑖
∮

𝑓(𝑧)

𝑧−𝑎
𝑑𝑧

𝐶
=

1

2𝜋𝑖
∫

𝑓(𝑎+𝑟𝑒𝑖𝜃)

𝑟𝑒𝑖𝜃

2𝜋

0
𝑖𝑟𝑒𝑖𝜃𝑑𝜃            

               𝑓(𝑎) =
1

2𝜋
∫ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃)𝑑𝜃

2𝜋

0
.          

That is, the value of 𝑓 at 𝑧 = 𝑎 is the average value of 𝑓 around any circle 

centered at 𝑧 = 𝑎.  
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If we multiply both sides by ∫ 𝑟𝑑𝑟
𝑅

0
 we get 

             𝑓(𝑎) ∫ 𝑟𝑑𝑟
𝑅

0
 =

1

2𝜋
∫ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃)𝑑𝜃 ∫ 𝑟𝑑𝑟

𝑅

0

2𝜋

0
     

                 𝑓(𝑎) (
𝑅2

2
) =

1

2𝜋
∫ ∫ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃)𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0
  

                              𝑓(𝑎) =
1

𝜋𝑅2 ∬ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃)𝑑𝐴
𝐷

  

where 𝐷 is the disk of radius 𝑅 with center at 𝑧 = 𝑎. 

 

Thus 𝑓(𝑎) is also the average value of 𝑓(𝑧) over a disk of any radius 𝑅 with 

center at 𝑧 = 𝑎.  

 

We will now use this result to prove: 

Theorem (Maximum Modulus Principal):   

1.  If 𝑓(𝑧) is analytic in a domain 𝐷, then |𝑓(𝑧)| cannot have a maximum 

inside 𝐷 unless 𝑓(𝑧)=constant. 

2. If 𝑓(𝑧) is analytic in a bounded region 𝐷 and |𝑓(𝑧)| is continuous in a 

closed region 𝐷̅, then |𝑓(𝑧)| assumes its maximum on the boundary of the 

region.   

 

 

Proof:   1.  Let’s show if 𝑎 ∈ 𝐷 and |𝑓(𝑧)| ≤ |𝑓(𝑎)| for all 𝑧 ∈ 𝐷 then 𝑓(𝑧) is 

a constant function. 
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Choose any disk, 𝐷0, of radius 𝑅 around 𝑧 = 𝑎 such that 𝐷0 ⊆ 𝐷. 

Let 𝑧 = 𝑎 + 𝑟𝑒𝑖𝜃;    0 ≤ 𝜃 ≤ 2𝜋 then 

                 𝑓(𝑎) =
1

𝜋𝑅2 ∬ 𝑓(𝑎 + 𝑟𝑒𝑖𝜃)𝑑𝐴
𝐷0

     so we have: 

              |𝑓(𝑎)| ≤
1

𝜋𝑅2 ∬ |𝑓(𝑎 + 𝑟𝑒𝑖𝜃)|𝑑𝐴 ≤
𝐷0

1

𝜋𝑅2 ∬ |𝑓(𝑎)|𝑑𝐴
𝐷0

      

         since |𝑓(𝑧)| ≤ |𝑓(𝑎)| for all 𝑧 ∈ 𝐷.  

 

But since |𝑓(𝑎)| is a constant we have: 

               |𝑓(𝑎)| ≤
1

𝜋𝑅2 ∬ |𝑓(𝑎)|𝑑𝐴
𝐷0

= |𝑓(𝑎)|.  

 

But that means that |𝑓(𝑎 + 𝑟𝑒𝑖𝜃)| = |𝑓(𝑧)| = |𝑓(𝑎)| for all 𝑧 ∈ 𝐷0, 
otherwise we would have a strict inequality:      

         
1

𝜋𝑅2 ∬ |𝑓(𝑎 + 𝑟𝑒𝑖𝜃)|𝑑𝐴 <
𝐷0

1

𝜋𝑅2 ∬ |𝑓(𝑎)|𝑑𝐴
𝐷0

.      

 

Thus |𝑓(𝑧)|  is a constant on 𝐷0. 

 

The C-R equations imply that an analytic function 𝑓(𝑧) whose modulus, |𝑓(𝑧)|, 
is constant must be a constant function. 

Now let’s show that if 𝐷 is a bounded region and |𝑓(𝑧)| is continuous on the 

closed region 𝐷̅, then |𝑓(𝑧)| assumes its maximum on the boundary of 𝐷.  

 

It is a theorem in functions of a real variable that a continuous function on a 

closed and bounded set (i.e. compact set) in ℝ2 must take on its maximum and 

minimum values.   
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Hence |𝑓(𝑧)| must achieve its maximum value on the boundary of 𝐷0(because it 

can’t have it’s maximum inside 𝐷 by part 1 unless it’s a constant, in which case it 

still takes on its maximum on the boundary). 

 

     If 𝑓(𝑧) is analytic and non-zero in a region 𝐷 then |𝑓(𝑧)| has a minimum 

value on 𝐷 and it gets achieved on the boundary of 𝐷.  This can be proved by 

applying the maximum modulus theorem to 𝑔(𝑧) =  
1

𝑓(𝑧)
 .    

 

     The maximum modulus principal also applies to the real and imaginary parts of 

an analytic function as well as harmonic functions. 

 

 

Ex.  Find the maximum value of |𝑓(𝑧)| on the unit disk, |𝑧| ≤ 1, for 

       𝑓(𝑧) = 𝑒(𝑧2).  

 

𝑧 = 𝑥 + 𝑖𝑦       ⇒     𝑧2 = (𝑥 + 𝑖𝑦)(𝑥 + 𝑖𝑦) = 𝑥2 − 𝑦2 + 2𝑥𝑦𝑖  

thus 

|𝑒(𝑧2)| = |𝑒(𝑥2−𝑦2)
𝑒2𝑥𝑦𝑖| = 𝑒(𝑥2−𝑦2).   

 

By the maximum modulus principal, since 𝑓(𝑧) = 𝑒(𝑧2) is analytic on |𝑧| ≤ 1, 

|𝑒(𝑧2)| must take on its maximum on the boundary of the unit disk, |𝑧| = 1, or 

the unit circle, 𝑥2 + 𝑦2 = 1.  

 

𝑒(𝑥2−𝑦2) will have its maximum value when 𝑦2 = 0, i.e. 𝑦 = 0 and 𝑥 = ±1. 

So the maximum value of |𝑓(𝑧)| = 𝑒[(±1)2−0] = 𝑒 and it occurs at 𝑧=±1. 


