Cauchy’s Theorem

Def. A simply connected domain D is one in which every simple closed contour within D
encloses only points of D.
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Simply Connected Not Simply Connected

Cauchy’s Theorem: If f is analytic and f’(Z) is continuous in a simply connected domain
D, then along a simple closed curve C in D:

$. f(z)dz = 0.

To prove this theorem we are going to use Green’s Theorem.

Green’s Theorem: Let the real valued functions u(x, y), v(x,y) along with their partial

derivatives—,—,—,=—,b ti throughout a simply connected region D
erivatives e continuous throughout a si connected region

a ) ay ) a ) ay ) y
consisting of points interior to and on a simple closed contour C in the xy-plane. Let C

be oriented in the positive direction, then:

_ dv _ du
$. ulx,y)dx +v(x,y)dy = [f, (52 ay)dxdy.



L ——__C =boundary of D

7

Proof of Cauchy’s Theorem:
Let f(z) = u(x,y) +iv(x,y) and dz = dx + idy then:
$. f(@dz =¢. (ulx,y) +iv(x,y))(dx + idy)

= ¢, udx —vdy +i§. udy + vdx.

Since f’(Z) is continuous, so are the partial derivatives of 4 and V. Thus u, v satisfy
Green’s theorem.

§, uCxy)dx —v(x,dy = [f, (— 57— FDdxdy

. uCx,y)dy +v(xy)dx = [f, (55— 52)dxdy.

So we have:
§, fdz = [f, (~5—5) dxdy + i [f, (55— 5Ddxdy.
But since f(2) is analytic in D, the Cauchy-Riemann equations hold:
ou_ v ou_ _ov
Ox dy an dy 6x

So both integrals on the RHS are 0 and

$. f(z)dz = 0.



Theorem: If f(z)is continuous in a simply connected domain D and if gﬁc f(z)dz =10

for every closed contour C lying in D, then there exists a function F(z), analyticin D,
such that F'(z) = f(2).

Proof: For points inside of D define F(2) as:
F(2) = [, fw)aw.

where the integral is along a contour from z, to Z that liesin D.

D C Z+h
Since gﬁc f(z)dz = 0 for every closed —

contour C lying in D we have:

[ fw)dw + [7, fw)dw + [7° f(w)dw = 0.

Since F(2) = [, f(w)dw = —F(2) = [,° f(w)dw. so:
Fz+h)+ [, fw)dw —F(z) = 0.
- Fiz+Rh) —F@) = [27" f(w)aw.

Now divide both sides by h and take the limit as h goes to O:

F'(z) = ;ll_r}(l) F(Z+h})l_F(Z) _ ;Li_r)r(l)%f?hf(w)dw = (2).

Notice the RHS equals f(Z) by the fundamental theorem of calculus.



Cauchy’s theorem can be extended to multiply connected domains by using crosscuts.
Suppose we have a multiply connected region which is bounded by two simple curves C;

and C, (where C; is inside of C,). Choose a pointp € C, and g € C;and draw the line
segment as shown below.

The region bounded by ABpgDEqpA is simply connected so Cauchy's theorem applies.
So if f is analytic in the region bounded by ABpgDEqpA then:

prquDEqpf (z)dz = 0.

So we have:

Jo, f(@)dz + [ f(2)dz + [ f(2)dz + [] f(z)dz = .

But since: quf(z)dz = — f:f(z)dz, we have:

fcz f(2)dz + f_clf(z)dz =0 = fc f(2)dz =0

where C = Cz - Cl'



Also notice that since f_Cl f(2)dz = — fC1 f(2)dz we get:
sz f(z)dz — fcl f(z)dz=0
sz f(2)dz = fcl f(2)dz.

This last relationship will turn out to be very useful.

zZ

Ex. Evaluate fﬁc dz ; where C is the circle |z] = 3.

z2-25

The only non-analytic points of f(z) = are at z = %5, which are not

e
z2-25

inside the simply connected region |z| < 3 (disk of radius 3). Thus f(2) is analytic in

zZ
this disk and gﬁc zze—zs dz = 0 by Cauchy’s theorem.
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Ex. Evaluate ———— dz; where C is the boundary of the annulus between the
C (z%2-25)z

circles |z| = 1 and |z]| = 3.

2] =

fz) =

intheannulus1 < |z| < 3so

—|s analytic
(z2-25)z Y

z

¢ e
C (z2-25)z

zZ

§ . —=—dz=0.

1—C2 (z2-25)z

by Cauchy’s theorem.

dz

c (z_— ) m = 1,2,3, ..., and C is a simple closed contour

1
Ex. Evaluate 2—
witha & C.

There are 2 cases: 1. where Z = a is outside of C; 2. where Zz = a isinside C.

. . — 1 . —
Case 1: If Z = a is outside of C then f(Z) = ™ m=123,..,is

dz

analytic inside the region bounded by C and so — @C = 0, by
(z—a)"

Cauchy’s theorem.
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Case 2: If z = a is inside of C then we can create a crosscut to a circle, C;, whose center
isZ = a and lies inside of C.

L)

Q. R —— #p

B ~ D

1
Since f(Z) = (z—a)m; m = 1,2,3, ..., is analytic in the region bounded by C and C;
we have:
Sﬁ dz__ _ 0 by Cauchy’s theorem. But
PABPGDED (z—a)™ Y y - Bu

dz . dz q dz dz p dz
¢pAquDEp (z—a)™ - gSC (z—a)™ T fp (z—a)™ T 43—C1 (z—a)™ T fq (z—a)™m
= 0.

dz fp dz

(z—a)™m q (z—a)™m =0 so

However, qu

dz dz dz dz
956 (z—a)™ + 56—61 (z—a)™ 0= Sﬁc (z-a)™ 4561 (z—a)™

1 dz 1 dz
= = ] 1 (f li |
S0 — Sﬁc ™~ 2mi fﬁcl o 0 if m+# 1 (from earlier example)

=1 ifm=1.



Notice by using a crosscut we were able to turn a contour integral over a general simple
closed contour into one over a circle (which is easier to calculate).

1 95 P'(2)
2mi 7C  P(2)
distinct) roots, none of which lie on a simple closed contour C.

Ex. Evaluate dz if P(z) is a polynomial of degree n, with n simple (i.e.

Since P(z) has n distinct roots we can factor it as:
P(z) =Mz —a,)(z - az)(z - a3) ..(z — ay)

where M is a constant and a4, a,, @z, ..., Ay are the roots of P(z).

Notice that
P'(z) _ d
P(2) T dz LOg(P(Z))
d
= L (LogM(z - a))(z — a)(z — a3) .. (2 — ap)
= % (Log(M) + Log(z — a;y) + Log(z — ay) + - Log(z — ay))
1 1 1 1

=—t—F—+ -+
3

z-aq4 Zz—a, Z—a Z—an

In the previous example we saw:

1 1

2mi VC z-z

dz =0 if zyis outside of C

=1 if zgisinside of C

Thus, 195 P(Z)dz=ic(1 + ! + ! + -+ ! )dz

2ni 'C  P(2) 2mi z-a4 zZ—a, ZzZ—as zZ—an

=number of roots inside C.



Ex. Evaluate ﬁc f(z)dz where C is a simple closed contour where z = 0 is inside C
and:

3(23)
o f(2) =%

e(zg)
b‘ f(Z) = Z3

3(23)
. @) =2,

a. First use a crosscut to turn the integral around a general simple closed contour into
one that’s a circle. Then by using Cauchy’s theorem:

C .
A/ BN | NP
F, 9/
Cy
=
B'
€
e
0= FﬁpAquDEqp ,dz

=4, e(j) dz + qu

dz + ¢ dz +

¢, dz.
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+J, z=0;
3(23) e(z3) 3(23) 3(23)
0=% dz+f dz=j€ dz—jg dz
C Z —¢; % c z ¢, <
(%) (z%)
e e
So we have: 456 ~ dz = 9561 ~ dz.
z2 Z3 zn
f=14+z4+—+—++—+- 5o
2! 3! n!

9 3n

6
e(7®) = 1+z23 4+ 4+ 4 424 ...
2! 3! n!

ic p dZ = ¢ - - - dZ
1

Cl Z

2 ZS ZBn—l
Zdz + Z dz+§ﬁC1;dz+---§ﬁC1 ——dz + -

C1z

All of the integrands except the first one are analytic inside the circle C; and therefore
their integrals around C; are O by Cauchy’s theorem.

The first integral we know is: gﬁc ZdZ = 2mi . Thus we have:
1

3(23)

zZ

9(23)

V4

dz = 2mi .

gﬁc dz = 9561

10



b. By a similar argument to part “a” (which you should make!!)

6. e(;, ) 4z = $.. e(;, ) dz.

3
Again using the power series for e(z ) we get:

6 9 3n

(Z3) 1+ZS+Z_+Z ++Z +-.-
e — 2! 3l n!
9561 z3 dz = ¢C1 z3 dz
1 Z3 ZSn—3
o C1Z_3dZ+¢C11dZ+¢C1;dZ+”.SﬁC1 n! dz + -

All of these integrals are 0 since . z*dz = 0, n # —1, Thus we have:

C1
3 3
e(z ) e(z )
. — dZ—_C}SC1 ——dz=0.
c. Similarly:
3 3
e(z ) e(z )
950 p” dz_gSC1 — dz .
6 ,9 3n
§ e(z%) $ 14234+t p
7 = Y ! P
Cl Z4' Cl Z4

3n—4

1 1 z?2 z
= —dz+951;dz+951§dz+~-§ﬁc

1 n!

dz + ---

11



Since 95(:1 zMdz =0 if m=#=—1

=2mi ifm=-1

e(zg) }
$. —idz = 2mi. Thus

e(zg) 3(23) .
gﬁc - dz = fﬁcl ——dz = 2mi.

o)

z—1

Ex. Evaluate fﬁc dz, where C is a simple closed

12

contour and Zz = 1 isinside of C.

This problem looks a lot like part “a” of the previous example. Start by making a crosscut

to turn this integral into an integral around a circle lyin

g inside of C centered at z = 1.

- .
—aA V :
a/]
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3(23)

0=
45PABPCIDECIP z-1

z—1 zZ—

z—1

=jEC el dz+qu il dz+_<)§_ e(zgidz+jp Al

c,Z

q
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Notice th fqe(zg)d +f”e(23)d =0;
otice that | '——-dz + ] '~—-dz = 0; so
0 e(z3) p 3(23) p 3(23) p e(zg) p
_i z—1 Z+3€_Clz—1 Z_i z—1 Z_il 7 —1%%
(%) (%)
e e
So we have: 956 1 dz = 4561 1 dz.
Nowletw =z —1,thusw+ 1 = z.
(%) (w+1)3)
e e
¢C1 z—1 dz = EﬁC1 w w.
6 9 3n
1+(w+1)3+(w";1) +(W:,1) o EDT
— ! ! n! dw
Cl w
_ 1 (w+1)3 (W+1)6
=9, —dw + 9561 ——dw +9'3C1 o) dw
(w+1)3"
+ e+ 95(:1 ) dw +
. w+1)3" 1 3n—1 k.
Notice that W w + Zk=0 dw’; so

6, 0 gy = (D omi

1 nl(w) n!
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Thus we have:

e
S5(11 z—
8(23) 3(23)
b S dz=%,

73

" dz = 2mi(Qry %) = 2mei and

23)

z(z—1)

inside of C and z = 1 is outside of C.

Ex. Evaluate gﬁ dz where C is a simple closed contour where z = 0 is

First use a crosscut to turn the integral around a general simple closed contour into one
that’s a circle.

Then by using Cauchy’s theorem: e

3(23)
0= 9SzoAquDEcm z(z—1) dz
3(23) q e( 3) 3(23) ) e(zg)

=¥ Z(z—1) fp z(z— 1) Sﬁ—C1 z(z—1) +fq z(z-1)



() (#)
e p e
D% g 7D

Notice that f;z dz = 0; so

3(23) e(zg) e(Zs) 3(23)

0= 45C z(z—-1) dz + 45—(51 z(z—-1) dz = ¢C z(z—1) dz — ¢C1 z(z—-1) dz.

3(23) e(zg)

z(z—1) Z= S’SC1 z(z-1)

So we have: 456 dz.

Cy is a circle of radius R < 1 and (C; lies inside of C.

2 3

Z_ 147424+ 4.4+ 4.0 o
2! 3! n!

9 3n

6
e(7®) = 1+z23 4+ 42 4 2 4.
2! 3! n!

6 .9 3n

i 6(23) dz :¢ 1+Z3+Zz_!+23_!+m+%+m 17
C1 z(z-1) C1 z(z—1)
4311
=6, Z(Z 3 dz+£ﬁc = dz+§ﬁ e 1)2|dz+ 9561 izt

All of the integrands except the first one are analytic inside the circle C; and therefore
their integrals around C; are 0.
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To evaluate C; z(z-1) dZz we use partial fractions.
1 _4, B
z(z—-1) Tz z-1
1 _ A(z-1)+B(2) _
D 2z-1 Thus1 = A(z— 1) + B(2).

At Z = 1 this becomes 1 = B and at
Z = (0 thisbecomes1 = —Aor4d = —1;

Thus A=-1, B=1.

1 1
0 on -zt
1 1 1 1 1
b o dz =6, (1 + ) dz =4, 2dz+§, dz

1
The far right integral is O by Cauchy’s theorem since 1 is analytic inside Cy, a circle of

radius R < 1.

1 .
We’ve already seen that 456 ; dz = 2mi.
1

é 3(23) d —¢ 8(23) dz = —2i
Thus: C 2@z-1) Z = ¢ 2(z—1) Z = —/LTlL.




