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                                              Contour Integration 

 

Let 𝑓(𝑡) be a complex valued function of a real variable 𝑡 on an interval            

𝑎 ≤ 𝑡 ≤ 𝑏 (e.g. 𝑓(𝑡) = 𝑐𝑜𝑠𝑡 + 𝑖𝑠𝑖𝑛𝑡).  We can then write: 

                                             𝑓(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) 

where 𝑢(𝑡) and 𝑣(𝑡) are real valued functions.  

 

Def.  𝑓(𝑡) is said to be integrable on 𝑎 ≤ 𝑡 ≤ 𝑏 if both 𝑢(𝑡) and 𝑣(𝑡) are 

integrable on 𝑎 ≤ 𝑡 ≤ 𝑏.  In that case we define 

                       ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑢(𝑡)𝑑𝑡 + 𝑖 ∫ 𝑣(𝑡)𝑑𝑡
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
.  

 

The usual rules of integration of real valued functions apply.  In particular, the two 

forms of the Fundamental Theorem of Calculus hold: 

             If 𝑓(𝑡) is a continuous function then: 

                                     
𝑑

𝑑𝑡
∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝑡)

𝑡

𝑎
 

         and  if 𝑓′(𝑡) is continuous then: 

                                     ∫ 𝑓′(𝑡)𝑑𝑡 = 𝑓(𝑏) − 𝑓(𝑎)
𝑏

𝑎
. 

 

     Now we want to extend the notion of integration to the integration of a 

     function 𝑓(𝑡) on a curve in the complex plane. 

     We can describe a curve in ℂ by a parametrization: 

                          𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡);           𝑎 ≤ 𝑡 ≤ 𝑏   

     (This is similar to parametrizing a curve in ℝ2 by 𝑐(𝑡) =< 𝑥(𝑡), 𝑦(𝑡) >).   

     We say the curve 𝑧(𝑡) is continuous/differentiable if 𝑥(𝑡) and 𝑦(𝑡) are 

     continuous/differentiable. 



2 
 

Def.  We say the curve 𝐶 represented by 𝑧(𝑡) is a simple curve if 𝑧(𝑡1) ≠ 𝑧(𝑡2) 

for any distinct 𝑡1, 𝑡2 ∈ [𝑎, 𝑏], except we will allow 𝑧(𝑎) = 𝑧(𝑏). 

This ensures that a simple curve 𝐶 does not intersect itself.  If 𝑧(𝑎) = 𝑧(𝑏) we 

say that 𝐶 is a simple closed curve (or just a closed curve) or a Jordan curve. 

 

 

 

 

 

 

If 𝐶 is a closed curve, we take the positive direction to be counterclockwise (i.e. if 

you are walking around the curve, the region bounded by the curve remains to 

your left).  We will assume all closed curves are oriented in the positive direction. 

 

 

 

 

 

 

 

 

 

Def.  The function 𝑓(𝑧) is said to be continuous on 𝑪 if 𝑓(𝑧(𝑡)) is a continous 

function for 𝑎 ≤ 𝑡 ≤ 𝑏.  𝑓(𝑧) is said to be piecewise continuous on 𝒂 ≤ 𝒕 ≤ 𝒃 

if [𝑎, 𝑏] can be broken up into a finite number of subintervals such that 𝑓(𝑧) is 

continuous on each subinterval. 

Simple Curve Not a Simple Curve Simple Closed Curve 

𝐶 
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Def.  A smooth arc (or curve) 𝐶 is one in which 𝑧′(𝑡) is continuous on                

𝑎 ≤ 𝑡 ≤ 𝑏. 

 

Def.  A contour is an arc consisting of a finite number of connected smooth 

curves, i.e. a contour is a piecewise smooth curve. 

 

                                                  

 

 

                                           Examples of Contours 

                          

 

A simple closed contour is called a Jordan contour.  

 

Def.  We define the contour integral of a piecewise continuous function on a  

contour 𝐶 by: 

                               ∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧(𝑡))𝑧′(𝑡)𝑑𝑡.
𝑏

𝑎𝐶
 

 

𝑤 = 𝑓(𝑧(𝑡)) is Piecewise Continuous  

𝑤 = 𝑓(𝑧(𝑡)) 
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This is very similar to a line integral of a vector field, however, the multiplication 

of 𝑓(𝑧(𝑡)) and 𝑧′(𝑡) is done by the usual multiplication of complex numbers, 

where the multiplication that occurs in a line integral of a vector field is the dot 

product of two vectors (which is different). 

As is true of line integrals of vector fields,  ∫ 𝑓(𝑧)𝑑𝑧
𝐶

 does not depend on the 

parametrization of 𝐶 as long as the orientation is preserved. 

 

 

The usual properties of line integrals hold: 

1.    ∫ (𝛼𝑓(𝑧) + 𝛽𝑔(𝑧))
𝐶

𝑑𝑧 = 𝛼 ∫ 𝑓(𝑧)𝑑𝑧 + 𝛽 ∫ 𝑔(𝑧)𝑑𝑧
𝐶𝐶

;  

                     𝛼, 𝛽 ∈ ℂ, 𝑓(𝑧), 𝑔(𝑧) are piecewise continuous.    

 

 

2. If we reverse the orientation of 𝐶 then:     ∫ 𝑓(𝑧)𝑑𝑧 = − ∫ 𝑓(𝑧)𝑑𝑧
𝐶−𝐶

   

 

 

3. If 𝐶=𝐶1 + 𝐶2 is the sum of contours 𝐶1 and 𝐶2 then 

                  ∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧 + ∫ 𝑓(𝑧)𝑑𝑧
𝐶2𝐶1𝐶

. 
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Theorem:  Suppose 𝐹(𝑧) is analytic and 𝑓(𝑧) = 𝐹′(𝑧) is continuous in a domain 

𝐷.  For a contour 𝐶 lieing inside 𝐷 with endpoints 𝑧1, 𝑧2 

                                 ∫ 𝑓(𝑧)𝑑𝑧 = 𝐹(𝑧2) − 𝐹(𝑧1)
𝐶

.  

 
 

 

Proof:      

 

 

 

 

 

 

 

 

 

                   ∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝐹′(𝑧)𝑑𝑧 = ∫ 𝐹′(𝑧(𝑡))𝑧′(𝑡)𝑑𝑡
𝑏

𝑎𝐶𝐶
;    

 

        where 𝑧(𝑡) is a parametrization of the curve 𝐶 with 𝑧(𝑎) = 𝑧1 and 

        𝑧(𝑏) = 𝑧2.   
 

             ∫ 𝑓(𝑧)𝑑𝑧 =
𝐶

∫ 𝐹′(𝑧(𝑡))𝑧′(𝑡)𝑑𝑡
𝑏

𝑎
= ∫

𝑑

𝑑𝑡
[𝐹(𝑧(𝑡))]𝑑𝑡

𝑏

𝑎
 

                                  = 𝐹(𝑧(𝑏)) − 𝐹(𝑧(𝑎)) 

                                  = 𝐹(𝑧2) − 𝐹(𝑧1). 
 

 

1. As a consequence of this theorem, for a closed contour 𝐶 

                                     ∮ 𝑓(𝑧)𝑑𝑧 = ∮ 𝐹′(𝑧)𝑑𝑧 = 0
𝐶𝐶

 

                  where ∮𝐶
 denotes an integral over a closed contour.  

           2.   Notice this theorem says that if 𝑓(𝑧) = 𝐹′(𝑧) then ∫ 𝑓(𝑧)𝑑𝑧
𝐶

 depends 

             only on the endpoints of 𝐶.  So any contour with the same endpoints will 

             result in the same value for the contour integral. 

𝑧1 

𝑧2 

𝐷 

𝐶 
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     Sometimes one evaluates a complex integral by reducing it to two real line 

integrals. 

              𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)      and   𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦,  then we have: 

                    ∫ 𝑓(𝑧)𝑑𝑧 = ∫ (
𝐶𝐶

 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦))(𝑑𝑥 + 𝑖𝑑𝑦) 

                                              = ∫ [(𝑢𝑑𝑥 − 𝑣𝑑𝑦) + 𝑖(𝑣𝑑𝑥 + 𝑢𝑑𝑦)].
𝐶

 

 

Ex.  Evaluate ∫ 3𝑧2𝑑𝑧
𝐶

 where 𝐶 is a line segment from 0 to 1 + 𝑖. 

 

       Here we can use the fact that 
𝑑

𝑑𝑧
(𝑧3) = 3𝑧2 so 

                ∫ 3𝑧2𝑑𝑧
𝐶

= 𝑧3|𝑧=0
𝑧=1+𝑖 = (𝑖 + 1)3 − 03 = 1 + 3𝑖 + 3𝑖2 + 𝑖3 

                                                      = 1 − 3 + 3𝑖 − 𝑖 = −2 + 2𝑖.  

 

   Or If we wanted to do this by parametrizing the line segment we could say: 

   The line segment 𝐶 is given by:   𝑧(𝑡) = 𝑡 + 𝑡𝑖             0 ≤ 𝑡 ≤ 1 

                                                     𝑧′(𝑡) = 1 + 𝑖  

 

  ∫ 3𝑧2𝑑𝑧
𝐶

= ∫ 3(𝑡 + 𝑡𝑖)2(1 + 𝑖)𝑑𝑡
𝑡=1

𝑡=0
         

           = ∫ 3(𝑡2 + 2𝑡2𝑖 − 𝑡2)(1 + 𝑖)𝑑𝑡
𝑡=1

𝑡=0
 

           = ∫ 6𝑡2𝑖(1 + 𝑖)𝑑𝑡
𝑡=1

𝑡=0
 

            = 2𝑡3𝑖(1 + 𝑖)|𝑡=0
𝑡=1 

            = 2𝑖(1 + 𝑖) = −2 + 2𝑖. 

 

1 + 𝑖 

0 

𝐶 
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Note: You can always parametrize a line segment from 𝑧1 = 𝑎 + 𝑏𝑖 to           

𝑧2 = 𝑐 + 𝑑𝑖 by:     

         𝑧(𝑡) = 𝑧1 + 𝑡(𝑧2 − 𝑧1)                                          0 ≤ 𝑡 ≤ 1    

         𝑧(𝑡) = (𝑎 + 𝑏𝑖) + 𝑡[(𝑐 − 𝑎) + (𝑑 − 𝑏)𝑖] 

                  = (𝑎 + (𝑐 − 𝑎)𝑡) + (𝑏 + (𝑑 − 𝑏)𝑡)𝑖         0 ≤ 𝑡 ≤ 1.   

        𝑧′(𝑡) = (𝑐 − 𝑎) + (𝑑 − 𝑏)𝑖.  

 

 

Given any smooth curve in ℂ  there's an infinite number of ways to parametrize it.  

Below is a set of parametrizations of some common curves. 

 

 

                     Parametrizations of Some Common Curves in ℂ 

                       Curve                                                 Parametrization 

Line segment from 𝑧1 = 𝑎 + 𝑏𝑖 to 
𝑧2 = 𝑐 + 𝑑𝑖 

    𝑧(𝑡) = 𝑧1 + 𝑡(𝑧2 − 𝑧1);                   
                 0 ≤ 𝑡 ≤ 1 

Circle of radius 𝑅 and center 𝑧 = 0  𝑧(𝑡) = 𝑅𝑒𝑖𝑡;              0 ≤ 𝑡 ≤ 2𝜋 
Circle of radius 𝑅 and center 𝑧 = 𝑎  𝑧(𝑡) = 𝑎 + 𝑅𝑒𝑖𝑡;      0 ≤ 𝑡 ≤ 2𝜋 
Curve 𝑦 = 𝑓(𝑥),      𝑎 ≤ 𝑥 ≤ 𝑏  𝑧(𝑡) = 𝑡 + 𝑖𝑓(𝑡);      𝑎 ≤ 𝑡 ≤ 𝑏 

Curve given by 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)),            

𝑎 ≤ 𝑡 ≤ 𝑏 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡);   𝑎 ≤ 𝑡 ≤ 𝑏    
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Ex.  Evaluate ∮ 𝑧𝑛𝑑𝑧
𝐶

  where 𝑛 is an integer and 𝐶 is the unit circle |𝑧| = 1. 

 

            𝑧(𝑡) = 𝑒𝑖𝑡     0 ≤ 𝑡 ≤ 2𝜋,                 𝑧′(𝑡) = 𝑖𝑒𝑖𝑡𝑑𝑡  

 

            ∮ 𝑧𝑛𝑑𝑧
𝐶

= ∫ (𝑒𝑖𝑡)
𝑛

(𝑖𝑒𝑖𝑡)𝑑𝑡
2𝜋

0
= ∫ 𝑒𝑖(𝑛+1)𝑡𝑖𝑑𝑡

2𝜋

0
  

 

 

                             =
𝑖𝑒𝑖(𝑛+1)𝑡

𝑖(𝑛+1)
|

𝑡=0

𝑡=2𝜋

= 0;            if  𝑛 ≠ −1 

                             = 𝑖𝑡|𝑡=0
𝑡=2𝜋 = 2𝜋𝑖                    if  𝑛 = −1.       

 

Ex.  Evaluate ∫ |𝑧|2𝑑𝑧
𝐶

 where 𝐶 is: 

a.  The right half of the circle |𝑧| = 2   (i.e. 𝑥2 + 𝑦2 = 4, 𝑥 ≥ 0) 

b.  The circle |𝑧 − 1| = 1 (circle of radius 1, center 𝑧 = 1) 

c.  The right triangle with vertices at 0, 2, and 2 + 2𝑖. 

 

a.        𝑧(𝑡) = 2𝑒𝑖𝑡     −
𝜋

2
≤ 𝑡 ≤

𝜋

2
 ,                 𝑧′(𝑡) = 2𝑖𝑒𝑖𝑡𝑑𝑡 

  ∫ |𝑧|2𝑑𝑧
𝐶

= ∫ |2𝑒𝑖𝑡|
2

𝜋

2

−
𝜋

2

(2𝑖𝑒𝑖𝑡)𝑑𝑡  

 

       = ∫ 4
𝜋

2

−
𝜋

2

(2𝑖𝑒𝑖𝑡)𝑑𝑡 = 8𝑒𝑖𝑡|
𝑡=−

𝜋

2

𝑡=
𝜋

2    

 

        = 8 (𝑒
𝑖𝜋

2 − 𝑒−
𝑖𝜋

2 ) = 8(𝑖 − (−𝑖)) = 16𝑖 

2 

2𝑖 

𝐶 
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b.    𝑧(𝑡) = 1 + 𝑒𝑖𝑡;    0 ≤ 𝑡 ≤ 2𝜋,                 𝑧′(𝑡) = 𝑖𝑒𝑖𝑡𝑑𝑡  

          ∮ |𝑧|2𝑑𝑧
𝐶

= ∫ |1 + 𝑒𝑖𝑡|
22𝜋

0
(𝑖𝑒𝑖𝑡)𝑑𝑡. 

 

   |1 + 𝑒𝑖𝑡|
2

= (1 + 𝑒𝑖𝑡)(1 + 𝑒𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅) 

                      = (1 + 𝑒𝑖𝑡)(1 + 𝑒−𝑖𝑡) 

                      = 1 + 𝑒𝑖𝑡 + 𝑒−𝑖𝑡 + 1 

                      = 2 + 2𝑐𝑜𝑠𝑡. 

 

    so: 

   ∮ |𝑧|2𝑑𝑧
𝐶

 = ∫ (2 + 2𝑐𝑜𝑠𝑡)(𝑖𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛𝑡)𝑑𝑡
2𝜋

0
 

                     = ∫ (−2𝑠𝑖𝑛𝑡 − 2(𝑐𝑜𝑠𝑡)(𝑠𝑖𝑛𝑡) + 𝑖(2𝑐𝑜𝑠𝑡 + 2𝑐𝑜𝑠2𝑡)𝑑𝑡
2𝜋

0
 

  ∮ |𝑧|2𝑑𝑧
𝐶

= (2𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑠2𝑡 + 2𝑖𝑠𝑖𝑛𝑡)|𝑡=0
𝑡=2𝜋 + 2𝑖 ∫ (

1

2
+

1

2
𝑐𝑜𝑠2𝑡) 𝑑𝑡

2𝜋

0
 

                     = 0 + 2𝑖(
1

2
𝑡 +

1

4
𝑠𝑖𝑛2𝑡)|

𝑡=0

𝑡=2𝜋
= 2𝜋𝑖.  

 

c. Parametrize the triangle as 3 line segments. 

    𝑧1(𝑡) = 0 + 𝑡(2 − 0) = 2𝑡                       0 ≤ 𝑡 ≤ 1         𝑧1′(𝑡) = 2 

     𝑧2(𝑡) = 2 + 𝑡(2 + 2𝑖 − 2) = 2 + 2𝑡𝑖    0 ≤ 𝑡 ≤ 1          𝑧2′(𝑡) = 2𝑖 

     𝑧3(𝑡) = 2 + 2𝑖 + 𝑡(0 − (2 + 2𝑖))  

      = (2 − 2𝑡) + 𝑖(2 − 2𝑡)             0 ≤ 𝑡 ≤ 1      𝑧3′(𝑡) = −2 − 2𝑖. 

 

  ∮ |𝑧|2𝑑𝑧
𝐶

= ∫ |𝑧|2
𝐶1

𝑑𝑧 + ∫ |𝑧|2
𝐶2

𝑑𝑧 + ∫ |𝑧|2
𝐶3

𝑑𝑧     

 

1 2 

𝐶 
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2 

 ∫ |𝑧|2
𝐶1

𝑑𝑧 = ∫ |2𝑡|2(2)𝑑𝑡 = ∫ 8𝑡2𝑑𝑡
1

0

1

0
 

                     =
8

3
𝑡3|

𝑡=0

𝑡=1
=

8

3
 .    

 

  ∫ |𝑧|2
𝐶2

𝑑𝑧 = ∫ |2 + 2𝑡𝑖|2(2𝑖)𝑑𝑡
1

0
 

                      = ∫ (4 + 4𝑡2)(2𝑖)𝑑𝑡
1

0
 

                       = 2𝑖 (4𝑡 +
4

3
𝑡3)|

𝑡=0

𝑡=1
 

                       = 2𝑖 (4 +
4

3
) =

32

3
𝑖 .    

 

 ∫ |𝑧|2
𝐶3

𝑑𝑧 = ∫ |(2 − 2𝑡) + (2 − 2𝑡)𝑖|2(−2 − 2𝑖)𝑑𝑡
1

0
  

                       = (−2 − 2𝑖) ∫ 2(2 − 2𝑡)2𝑑𝑡
1

0
    

                     = (−2 − 2𝑖)(−
1

3
(2 − 2𝑡)3|

𝑡=0

𝑡=1
 

                      = (−2 − 2𝑖) (
8

3
) = −

16

3
−

16

3
𝑖.   

 

              ∮ |𝑧|2𝑑𝑧
𝐶

=
8

3
+

32

3
𝑖 −

16

3
−

16

3
𝑖 = −

8

3
+

16

3
𝑖.   

 

 

 

 

2 + 2𝑖 2𝑖 

𝐶1 

𝐶2 𝐶3 
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Ex.  Evaluate  ∮ (𝑧 − 𝑎)𝑛𝑑𝑧
𝐶

, where 𝑛 is an integer and 𝐶 is the circle of radius 

𝑅 around 𝑎 ∈ ℂ (i.e. |𝑧 − 𝑎| = 𝑅).     

 

 

The easiest way to do this is to substitute                                                                 

 𝑤 = 𝑧 − 𝑎,  𝑑𝑤 = 𝑑𝑧.                                                                                                      

Then the integral becomes:                                                                          

  ∮ (𝑤)𝑛𝑑𝑤
𝐶

,  where 𝐶 is |𝑤| = 𝑅.                                                                          

This is an integral we did earlier.               

    ∮ (𝑧 − 𝑎)𝑛𝑑𝑧
𝐶

= ∮ (𝑤)𝑛𝑑𝑤
𝐶

= 0            if  𝑛 ≠ −1 

                                                                  = 2𝜋𝑖       if   𝑛 = −1. 

 

Or we could note that:   (𝑧 − 𝑎)𝑛 =
𝑑

𝑑𝑧
(

1

𝑛+1
(𝑧 − 𝑎)𝑛+1)  if 𝑛 ≠ −1 so 

          ∮ (𝑧 − 𝑎)𝑛𝑑𝑧
𝐶

= 𝐹(𝑧2) − 𝐹(𝑧1) = 0;    since 𝐶 is a closed curve.  

 

For 𝑛 = −1 then (𝑧 − 𝑎)−1 =
𝑑

𝑑𝑧
(log (𝑧 − 𝑎)),   but log (𝑧) is not single 

valued on any domain that contains the circle |𝑧 − 𝑎| = 𝑅.  However, we can 

evaluate this as a line integral: 

                𝑧(𝑡) = 𝑎 + 𝑅𝑒𝑖𝑡,   0 ≤ 𝑡 ≤ 2𝜋;                    𝑧′(𝑡) = 𝑖𝑅𝑒𝑖𝑡  

 

                               ∮
1

𝑧−𝑎
𝑑𝑧 = ∫

1

𝑅𝑒𝑖𝑡 (𝑖𝑅𝑒𝑖𝑡)𝑑𝑡
2𝜋

0𝐶
  

                                                  = ∫ 𝑖𝑑𝑡
2𝜋

0
 

                                                  = 2𝜋𝑖. 

𝑎 

𝑅 
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Ex.  Evaluate ∫ 𝑅𝑒(𝑧)𝑑𝑧;  
2+4𝑖

0
on the parabola 𝑦 = 𝑥2.  

 

       The curve 𝑦 = 𝑥2 is represented by the points (𝑡, 𝑡2),  0 ≤ 𝑡 ≤ 2 in ℝ2 

        and by  

              𝑧(𝑡) = 𝑡 + 𝑡2𝑖     0 ≤ 𝑡 ≤ 2  in ℂ.   

          So 𝑧′(𝑡) = 1 + 2𝑡𝑖. 

 

 

 

 

 

 

 

 

 

      𝑅𝑒(𝑧) = 𝑥 = 𝑡;   so the integral becomes;  

 

       ∫ 𝑅𝑒(𝑧)𝑑𝑧 = ∫ 𝑡(1 + 2𝑡𝑖)𝑑𝑡
𝑡=2

𝑡=0
 

2+4𝑖

0
 

                                  = ∫ (𝑡 + 2𝑖𝑡2)𝑑𝑡
𝑡=2

𝑡=0
 

                                   = (
𝑡2

2
+

2𝑖

3
𝑡3)|

𝑡=0

𝑡=2

 

                                    = 2 +
16

3
𝑖 .   

 

 

2 + 4𝑖 

𝑧(𝑡) = 𝑡 + 𝑡2𝑖      

0 
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Theorem:  Let 𝑓(𝑧) be continuous on a contour 𝐶.  Then: 

                                        |∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤ 𝑀𝐿 

Where 𝐿 is the length of 𝐶 and |𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ 𝐶. 

 

Proof:  ∫ 𝑓(𝑧)𝑑𝑧 = lim
∆𝑧→0

∑ 𝑓(𝑧𝑖)∆𝑧𝑛
𝑖=1𝐶

           (equivalent to earlier definition) 

         |∫ 𝑓(𝑧)𝑑𝑧
𝐶

| = | lim
∆𝑧→0

∑ 𝑓(𝑧𝑖)∆𝑧𝑛
𝑖=1 |             

                                     ≤ lim
∆𝑧→0

∑ |𝑓(𝑧𝑖)∆𝑧|𝑛
𝑖=1                 (triangle inequality)  

                                     ≤ lim
∆𝑧→0

∑ 𝑀|∆𝑧|𝑛
𝑖=1                       (|𝑓(𝑧)| ≤ 𝑀 for 𝑧 ∈ 𝐶) 

                                      = 𝑀𝐿                                                   ( lim
∆𝑧→0

∑ |∆𝑧| = 𝐿).𝑛
𝑖=1  

 

Ex.  Let 𝐶 be an open upper semicircle of radius 𝑅 with its center at the origin.  

Let   𝑓(𝑧) =
1

𝑧2+𝑎2 ;   𝑎 ∈ ℝ,   𝑎 > 0.  Show that 

1. |𝑓(𝑧)| ≤
1

𝑅2−𝑎2;    when 𝑅 > 𝑎 

2. |∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤
𝜋𝑅

𝑅2−𝑎2;    when 𝑅 > 𝑎 

3. lim
𝑅→∞

∫ 𝑓(𝑧)𝑑𝑧
𝐶

= 0. 

 

 

 

 

 

𝐶 

𝑅 −𝑅 
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1. From the triangle inequality we know that:       ||𝑧1| − |𝑧2|| ≤ |𝑧1 + 𝑧2|. 

Apply this inequality to 𝑧1 = 𝑧2  and  𝑧2 = 𝑎2:       ||𝑧2| − |𝑎2|| ≤ |𝑧2 + 𝑎2|.   

 

If 𝑧 is on the upper semicircle of radius 𝑅,    𝑧 = 𝑅𝑒𝑖𝑡,      0 < 𝑡 < 𝜋,    so 

||𝑅2𝑒2𝑖𝑡| − |𝑎2|| ≤ |𝑧2 + 𝑎2|   or equivalently:   |𝑅2 − 𝑎2| ≤ |𝑧2 + 𝑎2|.    

 

Since  0 < 𝑎 < 𝑅,  0 ≤ 𝑅2 − 𝑎2 ≤ |𝑧2 + 𝑎2|  or  

                                                  
1

𝑅2−𝑎2 ≥
1

|𝑧2+𝑎2| 
 = |𝑓(𝑧)|. 

 

2. Since 𝑓(𝑧) is continuous on 𝐶, we have:   |∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤ 𝑀𝐿. 

We can use 𝑀 =
1

𝑅2−𝑎2 from part #1 (when 𝑎 < 𝑅)  , and we know that 

𝐿 = 𝜋𝑅, since 𝐶 is a semicircle.  Thus we have:  

           |∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤ 𝑀𝐿 =
𝜋𝑅

𝑅2−𝑎2;     when 𝑎 < 𝑅.  

 

 

 

3.          0 ≤ | lim
𝑅→∞

∫ 𝑓(𝑧)𝑑𝑧
𝐶

| ≤ lim
𝑅→∞

𝜋𝑅

𝑅2−𝑎2 = 0;   so    

 

                         lim
𝑅→∞

∫ 𝑓(𝑧)𝑑𝑧𝐶 = 0  by the squeeze theorem. 


