Multivalued Functions

A single valued function w = f(Z) gives one value w for a given value of z.

Ex. W = z2. Forexample, if z = 2i thenw = (2i)? = —4.

A multivalued function yields more than one value w for a given Z.
Multivalued functions frequently arise as the inverse of a single valued function.

1
Ex. Ifw = ZZ, it’s inverse Z = w2 is a multivalued function. If W = —4 then

1
z = (—4)2 = +2i.
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We can represent any complex number w = x + [y in polar form by w = Tele,

wherer = \/x? + y2, and 0 = 9p + 2mn, nanintegerand 0 < Qp < 2m. So

1 _ (o 1 1y i6p :
z=wz=(re?)z = (re‘( P+2"”))2 =r2 (e 2 )(e”’”); n an integer.



1
For any non-zero value of W, w2 has two values:

i6p

E ¥p E ©p i
wz=(Vr)ez and wz=Hr)eze® =—(r)ez.

If we let 11 be any integer other thann = 0,1, we would simply repeat values. For

1 1 p : p :
example,ifn =2, w2z =712 (e 2 )(ez’”) = (r)ez ; since e?™ =

Notice that something very odd happens when we let W traverse a small circle of

radius € > 0 around the point w = 0. We will see that we won’t return to the same
1

value of Z = w2 as we let W traverse the circle.
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Let’s start at the pointw = €, ifw = Teie, thenr = € and 8 = 0. Taking the
1 i0
partof z = wz = (v/e)ez , let O go from 0 to 27. W is the same point for
6 = 0or 6 = 2m (we’ve just gone around the cirlce), but

0 =0, Z=W%=(\/E)e%=\/z
0 = 2m, z=wi= (\/E)e¥ = (We)e™ = —/e

So we get 2 different values to this function for the same point w.



Def. A branch point of a multivalued function is one where upon traversing a small
circle around the point, the value of the function does not return to its original value.

1
The point w = 0 is a branch point for the function z = wz.

1
In this example, W = 00 is also a branch point. We can see this by substituting w = T
into the function and studying the point where t = 0.

1 1
1 1 e
Z=w2=—5=t¢ (2)
t2
1
A similar argument to the one we just made for Z = w2 around w = 0, also shows
1

thatt = O isa branch pointforz =t 2.

Notice that if we take any other point w # 0 or oo, it will not be a branch point
1
forz = wz,

For example, in the example to the right for

any point on the green circle about w

represented by re'r, we have a minimum ' VA G Pl
/ W
theta, 0,,, and a maximum theta, 6,,, such 1
T W
that: O<9mS9pS9M<E<2n. ’:0‘91\4
(40, \

So when we go around the circle 8, can’t

go from 6 to 6 + 2m. In fact, 6, will return

to its original value as we go around the circle.

1
Thus Zz = w2 will return to its original value as we go around the circle. Thus

w # 0 or oo will not be a branch point.



When working with multivalued functions one generally tries to find a subset of C
where the function is single valued and continuous. A continuous single valued

function obtained by restricting a multivalued function to a subset of C is called a
branch of the multivalued function.

1
For Z = w2 we can do this by removing the positive real axis (along with z = 0

and z = o) from C. The positive real axis in this case is called a branch cut. In this

particular case any ray starting at 0 given by & = constant would also work as a
branch cut.

When we taken = 0,and 0 < 6, < 27 in the formula:

1

) 1
7 = W2 = (rel(9P+2ﬂn))5

1
it’s called the principal value of z = w2,

1
Ex. Find all possible values for (1 + \/3_’1')5 and identify its principal value.

First convert 1 + v/3i to polar form.

w=1++V3i, x=1, y=\/§,

sor=v1+3=2, tanf = (?), so 0 = %, since W is in the first quadrant.
i . 1 i ~ 1
w = Ze(?+2nm) o WE — (26(?+2n7n))5

1 i\ 1 i
n =0 (principal value) wz = (Ze(?))i =2e% = \/f(g + %l)
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— (Ze(n?i””"))%
= v2el

= —v2e(%)
= - VZ(2+20).

2

i .
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Ex. Find branch points and branch cuts for
1
a. w=(z—2y)z zy € C

1
b.w=(az+b)2; abeC a=#0.

1
a. Letz' = z — 7, then the function becomes W = (z')z. We just saw that

this function has branch points at z' = 0 and z' = 0. Thus

1
w = (z — z)2 has branch pointsat 0 = z' = z — zy or z = z,

and z' = o0 orz = 00, We could use as a branch cut the ray starting
at z” = 0 and going out the positive X’ axis. This is the same as taking a
ray startingat 0 = z' = z — Zy or araystarting at Z = Zy and going
parallel to the positive real axis.

1
b. Let z' = az + b then the function again becomesw = (z')z. Soz' = 0

b
and z' = oo are branch points. So00 = z' = az + b meansthatz = —3
is a branch point and Z = o0 is a branch point. As a branch cut we can take a

b
ray startingatz = — p going to oo running parallel to the real axis (actually

. b . .
any ray starting from z = — 5 Boing to oo will work).



Let’s consider the inverse function of z = e". Lettingw = u + iv we have:
7 =W = putiv) — pu,iv

Op

Ifz = ret ;. where 0 < Hp < 2m then we have:

retn = ete®,

Sor=e%, rT,u€Rand v=_0,+2nn, naninteger.

Sincer,u € R we know thatu = In(7).

By analogy we say that :

w =1In(z) =In(r) +i(0, + 2tn), nanyinteger, 0 < 6, < 2.

Notice that z = 0 is a branch point for w = In(z). Aswe go fromz = €, € a
positive real number, around a circle of radius € to z = €e?™, w = In(z) goes

from In(€) to In(€) + 2mi. In fact, each time we go around the point z = 0 we get
1

a different value for In(z). Thus In(z) has an infinite number of values (W = z2

only has 2 values).

When we take n = 0, we get the principal value of the logarithm:
w =1In(z) =In(r) +i(6,), 0<6, <2m.

By restricting the value of Hp to0 < 9p < 21 we create a (continuous) single valued

function. Thus we can again take as a branch cut for [n(z), the positive real axis.



1
Notice that Z = 0 is also a branch point of [n(z), since if we substitute z = ~ then

nearz = oo and t = 0 we have:
In(z) = In () = —In(®).
Since In(z) had a branch pointat z = 0, —In(t) will have a branch point at

t = 0, which corresponds to z = oo,
We will write log(z) for In(z).

Now let’s find u(x,y) and v(x, y) such that:

w =log(z) = u(x,y) + iv(x,y).

Westartwithz = e"; letz=x+1iy, w=u+iv.
x 4 iy = eWH) = oUel = oU(cosy + isinv)

So x = e%cosv, y = eYsinv.
Thus:  x2 + y2 = e?“cos?v + e?Ysin’v = e?¥,

= log(x? + y2) = 2u; or u(x,y) = %log(x2 + y2).

y _ elsinv _ 1.y
= Taoe, = tanw or v(x,y) = tan )

So:

w = log(z) = u(x,y) +iv(x,y) = %log(x2 +y2) +i (tan"1 (%)) .



Note: Since — % <tan 'A< g, to guarantee that v(x, y) is differentiable for

(x,y) # (0,0), when we write v(x,y) = tan™?! G) we really mean

v(x,y) = tan™* (2) + k;; j=1234.

where j refers to the quadrant that (X, y) isin and
k1=0, k2=k3=77:, k4=27T

One can see the problem if you let (x, y) go around the unit circle. The value
of v(x, y) without the constants added will jump as (x, y) crosses the y-axis.

Let’s show that w = log(z) satisfies the Cauchy-Riemann equations when z # 0.

log(z) = u(x,y) +iv(x,y) = %10g(x2 +y4) +i (“‘"_1 (%))

s
- y - 1 (1) X

Y x24y2 y o 1+(%)2 x)  x2+y?
Soif z # 0, then Uy = Dy Uy = —Vy

and all partial derivatives are continuous away from (0,0). Thusw = log(z) is
analyticif z # 0.

To calculate f'(2) when f(z) = log(z), recall that:

/ . X iy x—iy
Z)=Uu v, = — =

zZ

zZ z



Ex. Find all possible values of Log(1 + i) and identify its principal value.

We start by writing 1 + i in polar exponential form.

x=1, y=1so
r=v12+ 12 =+/2, and tan9=¥=%=1.

If you plot 1 + i in the complex plane you can see that it’s in the first quadrant and

therefore, 8 = %. So we can write:
1+i= (\/E)e(frznn)i . where=0,+1,+2, ....
Log(1 +i) = Log(\/fe(frzm)i)
= Log\/i + G + 2nn) i; n=04+1,+2,...

The principal value occurs when n = 0; so the principal value is:

Log(1+1i) = LogV2 + (%) or Log(1+1i)= %LogZ + (%)

Ex. Find all solutions of 3 — 2e2%2+1 =7,

3 —2e%2tl =7
e2z+1l — _9
2z+ 1 =1In(-2); where =2 =2e@*2V 5 =0,+1,+2,..
2z + 1 = In(2e™+2nm)) = In(2) + wi(2n + 1)
2z=IR2)-1+mi(2n+1)

7= 0G0 B i), n=0,41,42, .. .
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We can now define Zt, where z,t € C to be:

7zt = etlog(z).

Notice that if t is an integer we do not get a multiple valued function since if
t = k, an integer then:

Zk — pklog(z) — ek(log(r)+i(9p+27m)) — pklog(r) pik8yp p2mnki.

Since k and 11 are integers e 27Kt = 1,

k

so zK = rke™ O \which is single valued.

If t is a rational number, t = Z, p and q integers with no common factors and g # 0
then:

Plog(z) glo g(r) . igep o 2mnLi

= e =e a; n=0414+%2,...

D.
n 2mn—i
Forn=12,..,q—1; _qp is not an integer and therefore € a #* 1.

b 14
Thus we get different values for z4 for each valueof n = 0,1,2, ...,q — 1. Thus z4

is multivalued (in fact g-valued).

p p
Once 1 get beyond ¢ — 1 oris less than 0, the values of Z4 will repeat. Thus Z4 has q

branches.

We can now find f'(2) for f(z) = z¢ by:

% (zt) = % (et108@) = (gtlog@) @ = 2t (E) = 7).

VA



1 p
As we saw with f(z) = z2, f(z) = z4 has branch pointsat z = 0 and o and a

branch cut along the positive real axis will give us a single valued function. The
principal value is again whenn = 0:

D
f(z) = Zq = eql 9m,, peznnq

p_v o,
with n = 0 we get: f(Z)—Zq e 1 " ; 0 <86, <2m.

2
Ex. Find all values of (1 4+ i)3 and identify the principal value.

First write 1 4+ i in polar form.

z=1+i=+2e@T2.  H _0+1 42, ..

4anr.

2 2
73 = (\/2)3 ( l+21’l7‘[l)3 _ (23)8(—l+—l)

wIN

%e%i = i/i(cos (6) + lSlTl( )) = %(g +%i)

WIN

= Y2650 = 3250 = — {2

2 . 8T. 1771, 51T.
n=2 Zg = We(gl-l_?l) = :{/EQTL = %e?l = i/i(—\/?g + %l)

Values repeatforn > 2orn < 0.

Principal VaIue=i/7(§ + %l) (i.,e.m = 0).

11



1
Ex. Let f(z) = (z — zp)4, find the branch points and possible branch cuts.

1
Let z' = z — Z;, then the function becomes W = (z')4. We just saw that

this function has branch points at z’ = 0 and z' = oo,

1
Thusw = (Z — zy)4 has branch pointsat 0 = z’ = z — z, or z = z, and

0=z =z—2zyorz =0,

We could use as a branch cut the ray starting at z” = 0 and going out the
positive X’ axis. This is the same as taking a ray startingat 0 = z’ = z — z,
or a ray starting at Z = Z; and going parallel to the positive real axis. In fact,
any ray starting at Z = Z; and going to o will work as a branch cut.

Inverse Trig Functions and Inverse Hyperbolic Functions

12

Inverse trig functions and inverse hyperbolic functions are multivalued functions

that can be calculated in terms of log functions.

w = sin"1(z) means that sin(w) = z.
eiw_e—iw
, =Z
21
eV —e™W = 2iz
e?W — 1 = 2izeW

e2W _ 2izeW — 1 = 0.

This is a quadratic equation in etw (you can substitute s = e and the

equation becomes s — 2izs — 1 = 0). We can solve it with the quadratic

formula: a=1, b=-2iz, c=-1.
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2iz+((2 iz)2—4(1)(—1))%

eWw
2

1
(where 5 power includes =+ roots)

1
; 2iz+(—4z%+4)2 ) 1
eV = ( 5 2 _ iz+ (1 —2z%)2  Now take logs on both sides:

iw =log(iz + (1 — zz)%)
w = sin"1(z) = —(i)log(iz + (1 — zz)%) ).

1
If you use the principal value of (1 — z2)z, you get the principal value of the inverse

sine.

We can now find a formula for the derivative of the inverse sine.

2 (sin"1(2)) = L (~(D)log(iz + (1 — 22)))

= (—(——2)

iz+(1-z2)2 (1-2z2)2

—( —i 1)(1'(1—22)51—2)

iz+(1-z2)2 (1-z2)2

= (—i)< i 1>=—1 —: oz # +1.
(1-2z2)2 (1-2z2)2

We can similarly find that:

1 —
cos™H(z) = —(Dlog(z +i(1 —72)2) = (cos™H(2)) =——7; 7z # 1
‘ (1-2%)2

_ 1 i—z d _ 1 .
tan"1(z) = z—ilog(— E(tan Y(2)) = — z# %

i+z
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a
Ex. Derive formulas for tanh™1(z) and - (tanh™1(2)).

Ifw = tanh™1(z) then tanh(w) = z.

sinh(w) eW—e™W
nh = = =
Sotanh(w) cosh(w) eW+e W z

e~ W

EyEy =,
e?W—1
e?W+1

W—1=2z(*"+1) =ze?V +z

eV —ze?W — 1=z
eW(1l—-2)=1+z
p2w — 112
1-z
log(1+z
> w=tanh i(2) =;log(;2); z# =+l

The principal value of log gives the principal value of w = tanh‘l(z).
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2L (tanh™(2)) === (G log(72))

= %[% (log(1 + z) — log(1 — 2))]

1.1 1
pEICTERE )
1.1 1
=20t
1
T 1-z2°
Similarly we can get:
1
sinh™1(z) = log(z + (1 + z%)2) ) %(sinh_l(z)) = ;1; z #+ +i

(1+22)2

1
cosh™(z) =log(z + (z? — 1)2)) i(cosh‘l(z)) = . z#4+1.
dz (Zz—l)i



